García-Díaz Carmen C, Chamkha Imen, Elmér Eskil, Nord Andreas
Department of Biology, Section for Evolutionary Ecology, Lund University, Lund, Sweden.
Department of Clinical Sciences, Mitochondrial Medicine, Lund University, Lund, Sweden.
FASEB J. 2023 Apr;37(4):e22854. doi: 10.1096/fj.202201613R.
Many animals downregulate body temperature to save energy when resting (rest-phase hypothermia). Small birds that winter at high latitudes have comparatively limited capacity for hypothermia and so pay large energy costs for thermoregulation during cold nights. Available evidence suggests this process is fueled by adenosine triphosphate (ATP)-dependent mechanisms. Most ATP is produced by oxidative phosphorylation in the mitochondria, but mitochondrial respiration may be lower during hypothermia because of the temperature dependence of biological processes. This can create conflict between increased organismal ATP demand and a lower mitochondrial capacity to provide it. We studied this in blood cell mitochondria of wild great tits (Parus major) by simulating rest-phase hypothermia via a 6°C reduction in assay temperature in vitro. The birds had spent the night preceding the experiment in thermoneutrality or in temperatures representing mild or very cold winter nights, but night temperatures never affected mitochondrial respiration. However, across temperature groups, endogenous respiration was 14% lower in hypothermia. This did not reflect general thermal suppression of mitochondrial function because phosphorylating respiration was unaffected by thermal state. Instead, hypothermia was associated with a threefold reduction of leak respiration, from 17% in normothermia to 4% in hypothermia. Thus, the coupling of total respiration to ATP production was 96% in hypothermia, compared to 83% in normothermia. Our study shows that the thermal insensitivity of phosphorylation combined with short-term plasticity of leak respiration may safeguard ATP production when endogenous respiration is suppressed. This casts new light on the process by which small birds endure harsh winter cold and warrants future tests across tissues in vivo.
许多动物在休息时会降低体温以节省能量(休息期低温)。在高纬度地区越冬的小型鸟类体温降低的能力相对有限,因此在寒冷的夜晚进行体温调节会消耗大量能量。现有证据表明,这个过程是由三磷酸腺苷(ATP)依赖机制驱动的。大多数ATP是由线粒体中的氧化磷酸化产生的,但由于生物过程对温度的依赖性,低温期间线粒体呼吸作用可能会降低。这可能会在生物体对ATP需求增加与线粒体提供ATP的能力降低之间产生冲突。我们通过在体外将测定温度降低6°C来模拟休息期低温,研究了野生大山雀(Parus major)血细胞线粒体中的这一现象。在实验前的夜晚,这些鸟处于热中性环境或代表温和或非常寒冷冬夜的温度环境中,但夜间温度从未影响线粒体呼吸作用。然而,在不同温度组中,低温状态下的内源性呼吸作用降低了14%。这并非反映线粒体功能的普遍热抑制,因为磷酸化呼吸作用不受热状态影响。相反,低温与泄漏呼吸作用降低三倍有关,从正常体温下的17%降至低温下的4%。因此,低温下总呼吸作用与ATP产生的耦合率为96%,而正常体温下为83%。我们的研究表明,磷酸化的热不敏感性与泄漏呼吸作用的短期可塑性相结合,可能在抑制内源性呼吸作用时保障ATP的产生。这为小型鸟类忍受严酷冬季寒冷的过程提供了新的见解,并值得未来在体内对不同组织进行测试。