Hochreiter Bettina, Meisterhans Michel, Zindel Christoph, Calek Anna-Katharina, Gerber Christian
Department of Orthopedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, CH-8008, Zurich, Switzerland.
Balgrist Campus, Orthopaedic Research Center, Zurich, Switzerland.
J Exp Orthop. 2023 Mar 14;10(1):23. doi: 10.1186/s40634-023-00580-5.
Functional internal rotation (IR) is a combination of extension and IR. It is clinically often limited after reverse total shoulder arthroplasty (RTSA) either due to loss of extension or IR in extension. It was the purpose of this study to determine the ideal in-vitro combination of glenoid and humeral components to achieve impingement-free functional IR.
RTSA components were virtually implanted into a normal scapula (previously established with a statistical shape model) and into a corresponding humerus using a computer planning program (CASPA). Baseline glenoid configuration consisted of a 28 mm baseplate placed flush with the posteroinferior glenoid rim, a baseplate inclination angle of 96° (relative to the supraspinatus fossa) and a 36 mm standard glenosphere. Baseline humeral configuration consisted of a 12 mm humeral stem, a metaphysis with a neck shaft angle (NSA) of 155° (+ 6 mm medial offset), anatomic torsion of -20° and a symmetric PE inlay (36mmx0mm). Additional configurations with different humeral torsion (-20°, + 10°), NSA (135°, 145°, 155°), baseplate position, diameter, lateralization and inclination were tested. Glenohumeral extension of 5, 10, 20, and 40° was performed first, followed by IR of 20, 40, and 60° with the arm in extension of 40°-the value previously identified as necessary for satisfactory clinical functional IR. The different component combinations were taken through simulated ROM and the impingement volume (mm) was recorded. Furthermore, the occurrence of impingement was read out in 5° motion increments.
In all cases where impingement occurred, it occurred between the PE inlay and the posterior glenoid rim. Only in 11 of 36 combinations full functional IR was possible without impingement. Anterosuperior baseplate positioning showed the highest impingement volume with every combination of NSA and torsion. A posteroinferiorly positioned 26 mm baseplate resulting in an additional 2 mm of inferior overhang as well as 6 mm baseplate lateralization offered the best impingement-free functional IR (5/6 combinations without impingement). Low impingement potential resulted from a combination of NSA 135° and + 10° torsion (4/6 combinations without impingement), followed by NSA 135° and -20° torsion (3/6 combinations without impingement) regardless of glenoid setup.
The largest impingement-free functional IRs resulted from combining a posteroinferior baseplate position, a greater inferior glenosphere overhang, 90° of baseplate inclination angle, 6 mm glenosphere lateralization with respect to baseline setup, a lower NSA and antetorsion of the humeral component. Surgeons can employ and combine these implant configurations to achieve and improve functional IR when planning and performing RTSA.
Basic Science Study, Biomechanics.
功能性内旋(IR)是伸展和内旋的结合。在反式全肩关节置换术(RTSA)后,由于伸展功能丧失或伸展时内旋功能丧失,临床上其常常受限。本研究的目的是确定肩胛盂和肱骨头组件的理想体外组合,以实现无撞击的功能性内旋。
使用计算机规划程序(CASPA)将RTSA组件虚拟植入正常肩胛骨(先前通过统计形状模型建立)和相应的肱骨中。肩胛盂的基线配置包括一个28毫米的基板,与肩胛盂后下缘齐平放置,基板倾斜角度为96°(相对于冈上窝),以及一个36毫米的标准球盂。肱骨的基线配置包括一个12毫米的肱骨干,一个干骺端,颈干角(NSA)为155°(内侧偏移+6毫米),解剖扭转角度为-20°,以及一个对称的聚乙烯镶嵌物(36毫米×0毫米)。测试了具有不同肱骨扭转角度(-20°,+10°)、NSA(135°、145°、155°)、基板位置、直径、外展和倾斜度的其他配置。首先进行5°、10°、20°和40°的盂肱伸展,然后在手臂伸展40°时进行20°、40°和60°的内旋——该值先前被确定为获得满意的临床功能性内旋所必需的值。通过模拟关节活动范围对不同的组件组合进行测试,并记录撞击体积(毫米)。此外,以5°的运动增量读出撞击的发生情况。
在所有发生撞击的病例中,撞击均发生在聚乙烯镶嵌物和肩胛盂后缘之间。在36种组合中,只有11种组合能够实现无撞击的全功能内旋。无论NSA和扭转角度如何组合,前上基板定位的撞击体积最大。后下位置的26毫米基板,导致额外2毫米的下悬以及6毫米的基板外展,提供了最佳的无撞击功能性内旋(5/6组合无撞击)。NSA为135°和+10°扭转的组合产生的撞击可能性较低(4/6组合无撞击),其次是NSA为135°和-20°扭转(3/6组合无撞击),与肩胛盂设置无关。
最大的无撞击功能性内旋是通过将后下基板位置、更大的球盂下悬、90°的基板倾斜角度、相对于基线设置6毫米的球盂外展、较低的NSA和肱骨头组件的前扭转相结合而实现的。外科医生在规划和进行RTSA时,可以采用并结合这些植入物配置来实现和改善功能性内旋。
基础科学研究,生物力学。