Institut Cochin, Inserm U1016, CNRS UMR 8104, Université de Paris, Paris, France.
Les Laboratoires Servier, Suresnes, France.
Elife. 2023 Mar 14;12:e78360. doi: 10.7554/eLife.78360.
Aggregates of the tau protein are a well-known hallmark of several neurodegenerative diseases, collectively referred to as tauopathies, including frontal temporal dementia and Alzheimer's disease (AD). Monitoring the transformation process of tau from physiological monomers into pathological oligomers or aggregates in a high-throughput, quantitative manner and in a cellular context is still a major challenge in the field. Identifying molecules able to interfere with those processes is of high therapeutic interest. Here, we developed a series of inter- and intramolecular tau biosensors based on the highly sensitive Nanoluciferase (Nluc) binary technology (NanoBiT) able to monitor the pathological conformational change and self-interaction of tau in living cells. Our repertoire of tau biosensors reliably reports molecular proximity of physiological full-length tau at microtubules; changes in tau conformation and self-interaction associated with tau phosphorylation, as well as tau interaction induced by seeds of recombinant tau or from mouse brain lysates of a mouse model of tau pathology. By comparing biosensors comprising different tau forms (. full-length or short fragments, wild-type, or the disease-associated tau(P301L) variant) further insights into the tau transformation process are obtained. Proof-of-concept data for the high-throughput suitability and identification of molecules interfering with the pathological tau transformation processes are presented. This novel repertoire of tau biosensors is aimed to boost the disclosure of molecular mechanisms underlying pathological tau transformation in living cells and to discover new drug candidates for tau-related neurodegenerative diseases.
tau 蛋白聚集体是几种神经退行性疾病(统称为 tau 病,包括额颞痴呆和阿尔茨海默病)的一个众所周知的标志。以高通量、定量的方式并在细胞环境中监测 tau 从生理单体向病理寡聚体或聚集体的转化过程仍然是该领域的一个主要挑战。鉴定能够干扰这些过程的分子具有很高的治疗意义。在这里,我们开发了一系列基于高度敏感的 Nanoluciferase(Nluc)双分子技术(NanoBiT)的 tau 生物传感器,能够监测活细胞中 tau 的病理构象变化和自相互作用。我们的 tau 生物传感器库可靠地报告了生理全长 tau 与微管的分子接近度;tau 磷酸化相关的 tau 构象和自相互作用的变化,以及重组 tau 种子或来自 tau 病理学小鼠模型的小鼠脑裂解物诱导的 tau 相互作用。通过比较包含不同 tau 形式(全长或短片段、野生型或与疾病相关的 tau(P301L)变体)的生物传感器,可以进一步了解 tau 转化过程。本文提供了用于高通量适用性和鉴定干扰病理 tau 转化过程的分子的概念验证数据。该新型 tau 生物传感器旨在揭示活细胞中病理 tau 转化的分子机制,并发现与 tau 相关的神经退行性疾病的新药物候选物。