Suppr超能文献

在线人体研究中的数据质量:MTurk、ProLific、CloudResearch、Qualtrics 和 SONA 之间的比较。

Data quality in online human-subjects research: Comparisons between MTurk, Prolific, CloudResearch, Qualtrics, and SONA.

机构信息

Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Department of Psychology, Kenyon College, Gambier, Ohio, United States of America.

出版信息

PLoS One. 2023 Mar 14;18(3):e0279720. doi: 10.1371/journal.pone.0279720. eCollection 2023.

Abstract

With the proliferation of online data collection in human-subjects research, concerns have been raised over the presence of inattentive survey participants and non-human respondents (bots). We compared the quality of the data collected through five commonly used platforms. Data quality was indicated by the percentage of participants who meaningfully respond to the researcher's question (high quality) versus those who only contribute noise (low quality). We found that compared to MTurk, Qualtrics, or an undergraduate student sample (i.e., SONA), participants on Prolific and CloudResearch were more likely to pass various attention checks, provide meaningful answers, follow instructions, remember previously presented information, have a unique IP address and geolocation, and work slowly enough to be able to read all the items. We divided the samples into high- and low-quality respondents and computed the cost we paid per high-quality respondent. Prolific ($1.90) and CloudResearch ($2.00) were cheaper than MTurk ($4.36) and Qualtrics ($8.17). SONA cost $0.00, yet took the longest to collect the data.

摘要

随着人类受试者研究中在线数据收集的普及,人们对注意力不集中的调查参与者和非人类受访者(机器人)的存在表示担忧。我们比较了通过五个常用平台收集的数据质量。数据质量通过有意义地回应研究人员问题的参与者的百分比(高质量)与仅提供噪音的参与者的百分比(低质量)来表示。我们发现,与 MTurk、Qualtrics 或本科生样本(即 SONA)相比,在 Prolific 和 CloudResearch 上的参与者更有可能通过各种注意力检查,提供有意义的答案,遵守指示,记住之前呈现的信息,具有独特的 IP 地址和地理位置,并且工作速度足够慢,可以阅读所有项目。我们将样本分为高质量和低质量受访者,并计算了我们为每个高质量受访者支付的成本。Prolific(1.90 美元)和 CloudResearch(2.00 美元)比 MTurk(4.36 美元)和 Qualtrics(8.17 美元)更便宜。SONA 成本为 0.00 美元,但收集数据所需的时间最长。

相似文献

1
Data quality in online human-subjects research: Comparisons between MTurk, Prolific, CloudResearch, Qualtrics, and SONA.
PLoS One. 2023 Mar 14;18(3):e0279720. doi: 10.1371/journal.pone.0279720. eCollection 2023.
2
Comparison of self-administered survey questionnaire responses collected using mobile apps versus other methods.
Cochrane Database Syst Rev. 2015 Jul 27;2015(7):MR000042. doi: 10.1002/14651858.MR000042.pub2.
4
Sertindole for schizophrenia.
Cochrane Database Syst Rev. 2005 Jul 20;2005(3):CD001715. doi: 10.1002/14651858.CD001715.pub2.
6
Control interventions in randomised trials among people with mental health disorders.
Cochrane Database Syst Rev. 2022 Apr 4;4(4):MR000050. doi: 10.1002/14651858.MR000050.pub2.
7
Systemic treatments for metastatic cutaneous melanoma.
Cochrane Database Syst Rev. 2018 Feb 6;2(2):CD011123. doi: 10.1002/14651858.CD011123.pub2.
8
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.
Health Technol Assess. 2006 Sep;10(34):iii-iv, ix-xi, 1-204. doi: 10.3310/hta10340.
9
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.

引用本文的文献

2
Anxiety and Depression are Associated with More Distorted Thinking on Social Media: A Longitudinal Multi-Method Study.
Cognit Ther Res. 2025 Aug;49(4):712-720. doi: 10.1007/s10608-025-10580-7. Epub 2025 Mar 3.
3
Cognitive Bias Affects Perception and Decision-Making in Simulated Facial Recognition Searches.
Behav Sci (Basel). 2025 Aug 12;15(8):1094. doi: 10.3390/bs15081094.
5
Evidence of spillovers from (non)cooperative human-bot to human-human interactions.
iScience. 2025 Jun 25;28(8):113006. doi: 10.1016/j.isci.2025.113006. eCollection 2025 Aug 15.
8
Validation of the english assessment of criteria for specific internet-use disorders (ACSID-11) for tinder and online pornography use.
Front Psychiatry. 2025 Jul 16;16:1595502. doi: 10.3389/fpsyt.2025.1595502. eCollection 2025.
10
Assessing the quality and reliability of the Amazon Mechanical Turk (MTurk) data in 2024.
R Soc Open Sci. 2025 Jul 16;12(7):250361. doi: 10.1098/rsos.250361. eCollection 2025 Jul.

本文引用的文献

1
Data quality of platforms and panels for online behavioral research.
Behav Res Methods. 2022 Aug;54(4):1643-1662. doi: 10.3758/s13428-021-01694-3. Epub 2021 Sep 29.
2
Turking in the time of COVID.
Behav Res Methods. 2021 Dec;53(6):2591-2595. doi: 10.3758/s13428-021-01588-4. Epub 2021 May 7.
5
Participant carelessness and fraud: Consequences for clinical research and potential solutions.
J Abnorm Psychol. 2020 Jan;129(1):49-55. doi: 10.1037/abn0000479.
6
Online panels in social science research: Expanding sampling methods beyond Mechanical Turk.
Behav Res Methods. 2019 Oct;51(5):2022-2038. doi: 10.3758/s13428-019-01273-7.
7
Are Manipulation Checks Necessary?
Front Psychol. 2018 Jun 21;9:998. doi: 10.3389/fpsyg.2018.00998. eCollection 2018.
8
An Evaluation of Amazon's Mechanical Turk, Its Rapid Rise, and Its Effective Use.
Perspect Psychol Sci. 2018 Mar;13(2):149-154. doi: 10.1177/1745691617706516.
10
Measuring the Prevalence of Problematic Respondent Behaviors among MTurk, Campus, and Community Participants.
PLoS One. 2016 Jun 28;11(6):e0157732. doi: 10.1371/journal.pone.0157732. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验