Suppr超能文献

用于实时监测胶质母细胞瘤的荧光探针的最新进展。

Recent Progress in Fluorescent Probes for Real-Time Monitoring of Glioblastoma.

机构信息

Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.

Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, South Korea.

出版信息

ACS Appl Bio Mater. 2023 Sep 18;6(9):3484-3503. doi: 10.1021/acsabm.3c00052. Epub 2023 Mar 14.

Abstract

Treating glioblastoma (GBM) by resecting to a large extent can prolong a patient's survival by controlling the tumor cells, but excessive resection may produce postoperative complications by perturbing the brain structures. Therefore, various imaging procedures have been employed to successfully diagnose and resect with utmost caution and to protect vital structural or functional features. Fluorescence tagging is generally used as an intraoperative imaging technique in glioma cells in collaboration with other surgical tools such as MRI and navigation methods. However, the existing fluorescent probes may have several limitations, including poor selectivity, less photostability, false signals, and intraoperative re-administration when used in clinical and preclinical studies for glioma surgery. The involvement of smart fluorogenic materials, specifically fluorescent dyes, and biomarker-amended cell-penetrable fluorescent probes have noteworthy advantages for precise glioma imaging. This review outlines the contemporary advancements of fluorescent probes for imaging glioma cells along with their challenges and visions, with the anticipation to develop next-generation smart glioblastoma detection modalities.

摘要

通过大范围切除来治疗胶质母细胞瘤(GBM)可以通过控制肿瘤细胞来延长患者的生存期,但过度切除可能会通过扰乱大脑结构而产生术后并发症。因此,各种成像程序已被用于成功诊断和切除,以谨慎和保护重要的结构或功能特征。荧光标记通常用作与 MRI 和导航方法等其他手术工具合作的胶质瘤细胞的术中成像技术。然而,现有的荧光探针可能具有几个局限性,包括较差的选择性、较低的光稳定性、假信号以及在临床和临床前研究中用于胶质瘤手术时的术中再给药。智能荧光材料,特别是荧光染料和生物标志物修饰的细胞穿透性荧光探针的应用,为精确的胶质瘤成像提供了显著的优势。本综述概述了用于成像胶质瘤细胞的荧光探针的最新进展及其挑战和前景,以期开发下一代智能胶质母细胞瘤检测方式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验