Suppr超能文献

用于通过调整异质界面中的电子缺陷来光激发细菌和病毒杀灭的触摸屏上的超晶格纳米薄膜。

Superlattice Nanofilm on a Touchscreen for Photoexcited Bacteria and Virus Killing by Tuning Electronic Defects in the Heterointerface.

机构信息

School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340, Beichen District, Tianjin, 300401, P. R. China.

School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin, 300072, P. R. China.

出版信息

Adv Mater. 2023 Jun;35(22):e2300380. doi: 10.1002/adma.202300380. Epub 2023 Apr 14.

Abstract

Currently, the global COVID-19 pandemic has significantly increased the public attention toward the spread of pathogenic viruses and bacteria on various high-frequency touch surfaces. Developing a self-disinfecting coating on a touchscreen is an urgent and meaningful task. Superlattice materials are among the most promising photocatalysts owing to their efficient charge transfer in abundant heterointerfaces. However, excess electronic defects at the heterointerfaces result in the loss of substantial amounts of photogenerated charge carrier. In this study, a ZnOFe O superlattice nanofilm is designed via atomic layer deposition for photocatalytic bactericidal and virucidal touchscreen. Additionally, electronic defects in the superlattice heterointerface are engineered. Photogenerated electrons and holes will be rapidly separated and transferred into ZnO and Fe O across the heterointerfaces owing to the formation of ZnO, FeO, and ZnFe covalent bonds at the heterointerfaces, where ZnO and Fe O function as electronic donors and receptors, respectively. The high generation capacity of reactive oxygen species results in a high antibacterial and antiviral efficacy (>90%) even against drug-resistant bacteria and H1N1 viruses under simulated solar or low-power LED light irradiation. Meanwhile, this superlattice nanofilm on a touchscreen shows excellent light transmission (>90%), abrasion resistance (10 times the round-trip friction), and biocompatibility.

摘要

目前,全球 COVID-19 大流行显著提高了公众对各种高频接触表面上致病病毒和细菌传播的关注。在触摸屏上开发自消毒涂层是一项紧迫而有意义的任务。超晶格材料是最有前途的光催化剂之一,因为它们在丰富的异质界面上具有高效的电荷转移。然而,异质界面处过多的电子缺陷会导致大量光生载流子的损失。在这项研究中,通过原子层沉积设计了 ZnOFe O 超晶格纳米薄膜,用于光催化杀菌和杀病毒触摸屏。此外,还对超晶格异质界面中的电子缺陷进行了工程设计。由于异质界面处形成了 ZnO、FeO 和 ZnFe 共价键,光生电子和空穴将在异质界面上迅速分离并转移到 ZnO 和 Fe O 中,其中 ZnO 和 Fe O 分别作为电子供体和受体。活性氧物种的高生成能力导致在模拟太阳光或低功率 LED 光照射下,即使对耐药细菌和 H1N1 病毒也具有很高的抗菌和抗病毒功效(>90%)。同时,这种超晶格纳米薄膜在触摸屏上具有出色的透光率(>90%)、耐磨性(往返摩擦 10 倍)和生物相容性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验