Huang Jin, Wu Shuilin, Wang Yi, Shen Jie, Wang Chaofeng, Zheng Yufeng, Chu Paul K, Liu Xiangmei
Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan, 430062, China.
School of Health Science & Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, China.
Bioact Mater. 2024 Mar 14;37:14-29. doi: 10.1016/j.bioactmat.2024.03.011. eCollection 2024 Jul.
Multi-drug resistant bacterial infections pose a significant threat to human health. Thus, the development of effective bactericidal strategies is a pressing concern. In this study, a ternary heterostructure (Zn-CN/P-GO/BiS) comprised of Zn-doped graphite phase carbon nitride (g-CN), phosphorous-doped graphene oxide (GO) and bismuth sulphide (BiS) is constructed for efficiently treating methicillin-resistant (MRSA)-infected wound. Zn doping-induced defect sites in g-CN results in a reduced band gap (Δ) and a smaller energy gap (Δ) between the singlet state S and triplet state T, which favours two-photon excitation and accelerates electron transfer. Furthermore, the formation of an internal electric field at the ternary heterogeneous interface optimizes the charge transfer pathway, inhibits the recombination of electron-hole pairs, improves the photodynamic effect of g-CN, and enhances its catalytic performance. Therefore, the Zn-CN/P-GO/BiS significantly augments the production of reactive oxygen species and heat under 808 nm NIR (0.67 W cm) irradiation, leading to the elimination of 99.60% ± 0.07% MRSA within 20 min. Additionally, the release of essential trace elements (Zn and P) promotes wound healing by activating hypoxia-inducible factor-1 (HIF-1) and peroxisome proliferator-activated receptors (PPAR) signaling pathways. This work provides unique insight into the rapid antibacterial applications of trace element doping and two-photon excitation.
多重耐药细菌感染对人类健康构成重大威胁。因此,开发有效的杀菌策略是一个紧迫的问题。在本研究中,构建了一种由锌掺杂石墨相氮化碳(g-CN)、磷掺杂氧化石墨烯(GO)和硫化铋(BiS)组成的三元异质结构(Zn-CN/P-GO/BiS),用于有效治疗耐甲氧西林金黄色葡萄球菌(MRSA)感染的伤口。锌掺杂在g-CN中诱导产生缺陷位点,导致带隙(Δ)减小,单重态S和三重态T之间的能隙(Δ)变小,这有利于双光子激发并加速电子转移。此外,三元异质界面处内部电场的形成优化了电荷转移途径,抑制了电子-空穴对的复合,提高了g-CN的光动力效应,并增强了其催化性能。因此,Zn-CN/P-GO/BiS在808 nm近红外光(0.67 W cm)照射下显著增强了活性氧和热量的产生,在20分钟内导致99.60%±0.07%的MRSA被消除。此外,必需微量元素(锌和磷)的释放通过激活缺氧诱导因子-1(HIF-1)和过氧化物酶体增殖物激活受体(PPAR)信号通路促进伤口愈合。这项工作为微量元素掺杂和双光子激发的快速抗菌应用提供了独特的见解。