Suppr超能文献

基于连接组学的急性缺血性脑卒中功能恢复预测模型。

Connectome-based predictive modeling for functional recovery of acute ischemic stroke.

机构信息

Professional Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.

Department of Neurology, Landseed International Hospital, Taoyuan, Taiwan; Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan.

出版信息

Neuroimage Clin. 2023;38:103369. doi: 10.1016/j.nicl.2023.103369. Epub 2023 Mar 8.

Abstract

Patients of acute ischemic stroke possess considerable chance of recovery of various levels in the first several weeks after stroke onset. Prognosis of functional recovery is important for decision-making in poststroke patient care and placement. Poststroke functional recovery has conventionally been based on demographic and clinical variables such as age, gender, and severity of stroke impairment. On the other hand, the concept of connectome has become a basis of interpreting the functional impairment and recovery of stroke patients. In this research, the connectome-based predictive modeling was used to provide predictive models for prognosing poststroke functional recovery. Predictive models were developed to use the brain connectivity at stroke onset to predict functional assessment scores at one or three months later, or to use the brain connectivity one-month poststroke to predict functional assessment scores at three months after stroke onset. The brain connectivity was computed from the resting-state fMRI signals. The functional assessment scores used in this research included modified Rankin Scale (mRS) and Barthel Index (BI). This research found significant models that used the brain connectivity at onset to predict the mRS one-month poststroke and to predict the BI three-month poststroke for patients with supratentorial infarction, as well as predictive models that used the brain connectivity one-month poststroke to predict the mRS three-month poststroke for patients with supratentorial infarction in the right hemisphere. The connectome-based predictive modeling could provide clinical value in prognosis of acute ischemic stroke.

摘要

急性缺血性脑卒中患者在发病后数周内具有不同程度恢复的巨大机会。功能恢复的预后对脑卒中患者的护理和安置决策至关重要。传统上,脑卒中后的功能恢复是基于人口统计学和临床变量,如年龄、性别和脑卒中损伤的严重程度。另一方面,连接组学的概念已成为解释脑卒中患者功能障碍和恢复的基础。在这项研究中,基于连接组学的预测模型被用于为脑卒中后的功能恢复进行预测建模。建立预测模型的目的是利用脑卒中发病时的大脑连接来预测发病后 1 个月或 3 个月的功能评估评分,或者利用脑卒中发病后 1 个月的大脑连接来预测发病后 3 个月的功能评估评分。大脑连接是从静息态 fMRI 信号中计算出来的。本研究中使用的功能评估评分包括改良 Rankin 量表(mRS)和巴氏指数(BI)。该研究发现了有意义的模型,这些模型利用发病时的大脑连接来预测发病后 1 个月的 mRS 和发病后 3 个月的 BI,用于额顶叶梗死患者,以及利用发病后 1 个月的大脑连接来预测发病后 3 个月的 mRS,用于右侧额顶叶梗死患者。基于连接组学的预测模型可以为急性缺血性脑卒中的预后提供临床价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c20/10011051/adc93800ecbc/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验