Suppr超能文献

任务很重要:来自自然主义和神经生理脑状态的个体脑磁图特征

Task matters: Individual MEG signatures from naturalistic and neurophysiological brain states.

作者信息

Colenbier Nigel, Sareen Ekansh, Del-Aguila Puntas Tamara, Griffa Alessandra, Pellegrino Giovanni, Mantini Dante, Marinazzo Daniele, Arcara Giorgio, Amico Enrico

机构信息

IRCCS San Camillo Hospital, Venice, Italy.

Medical Image Processing Laboratory, Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland.

出版信息

Neuroimage. 2023 May 1;271:120021. doi: 10.1016/j.neuroimage.2023.120021. Epub 2023 Mar 13.

Abstract

The discovery that human brain connectivity data can be used as a "fingerprint" to identify a given individual from a population, has become a burgeoning research area in the neuroscience field. Recent studies have identified the possibility to extract these brain signatures from the temporal rich dynamics of resting-state magneto encephalography (MEG) recordings. Nevertheless, it is still uncertain to what extent MEG signatures can serve as an indicator of human identifiability during task-related conduct. Here, using MEG data from naturalistic and neurophysiological tasks, we show that identification improves in tasks relative to resting-state, providing compelling evidence for a task dependent axis of MEG signatures. Notably, improvements in identifiability were more prominent in strictly controlled tasks. Lastly, the brain regions contributing most towards individual identification were also modified when engaged in task activities. We hope that this investigation advances our understanding of the driving factors behind brain identification from MEG signals.

摘要

人类大脑连接性数据可作为“指纹”从人群中识别特定个体,这一发现已成为神经科学领域一个蓬勃发展的研究领域。最近的研究已经确定了从静息态脑磁图(MEG)记录的丰富时间动态中提取这些大脑特征的可能性。然而,在与任务相关的行为中,MEG特征在多大程度上可以作为人类可识别性的指标仍不确定。在这里,我们使用来自自然主义和神经生理学任务的MEG数据表明,与静息态相比,在任务中识别能力有所提高,为MEG特征的任务依赖性轴提供了令人信服的证据。值得注意的是,在严格控制的任务中,可识别性的提高更为显著。最后,当参与任务活动时,对个体识别贡献最大的脑区也会发生变化。我们希望这项研究能增进我们对从MEG信号进行大脑识别背后驱动因素的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验