Suppr超能文献

基于血小板与淋巴细胞比值的列线图预测乳腺癌新辅助化疗后病理完全缓解。

A nomogram based on platelet-to-lymphocyte ratio for predicting pathological complete response of breast cancer after neoadjuvant chemotherapy.

机构信息

Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, 710061, Xi'an, China.

Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Shannxi, 710061, Xi'an, China.

出版信息

BMC Cancer. 2023 Mar 14;23(1):245. doi: 10.1186/s12885-023-10703-x.

Abstract

OBJECTIVE

To investigate the role of platelet-to-lymphocyte ratio (PLR) in complete pathological response (pCR) of breast cancer (BC) patients after neoadjuvant chemotherapy (NAC), as well as to establish and validate a nomogram for predicting pCR.

METHODS

BC patients diagnosed and treated in the First Affiliated Hospital of Xi'an Jiaotong University from January 2019 to June 2022 were included. The correlation between pCR and clinicopathological characteristics was analyzed by Chi-square test. Logistic regression analysis was performed to evaluate the factors that might affect pCR. Based on the results of regression analysis, a nomogram for predicting pCR was established and validated.

RESULTS

A total of 112 BC patients were included in this study. 50.89% of the patients acquired pCR after NAC. Chi-square test showed that PLR was significantly correlated with pCR (X = 18.878, P < 0.001). And the PLR before NAC in pCR group was lower than that in Non-pCR group (t = 3.290, P = 0.001). Logistic regression analysis suggested that white blood cell (WBC) [odds ratio (OR): 0.19, 95% confidence interval (CI): 0.04-0.85, P = 0.030)], platelet (PLT) (OR: 0.19, 95%CI: 0.04-0.85, P = 0.030), PLR (OR: 0.18, 95%CI: 0.04-0.90, P = 0.036) and tumor grade (OR: 9.24, 95%CI: 1.89-45.07, P = 0.006) were independent predictors of pCR after NAC. A nomogram prediction model based on WBC, PLR, PLR and tumor grade showed a good predictive ability.

CONCLUSION

PLR, PLT, WBC and tumor grade were independent predictors of pCR in BC patients after NAC. The nomogram based on the above positive factors showed a good predictive ability.

摘要

目的

探讨血小板与淋巴细胞比值(PLR)在乳腺癌(BC)患者新辅助化疗(NAC)后完全病理缓解(pCR)中的作用,并建立和验证预测 pCR 的列线图。

方法

纳入 2019 年 1 月至 2022 年 6 月在西安交通大学第一附属医院诊断和治疗的 BC 患者。采用卡方检验分析 pCR 与临床病理特征的相关性。采用 logistic 回归分析评估可能影响 pCR 的因素。基于回归分析的结果,建立并验证预测 pCR 的列线图。

结果

本研究共纳入 112 例 BC 患者。50.89%的患者在 NAC 后获得 pCR。卡方检验显示,PLR 与 pCR 显著相关(X=18.878,P<0.001)。并且 pCR 组 NAC 前的 PLR 低于非 pCR 组(t=3.290,P=0.001)。Logistic 回归分析提示白细胞(WBC)[比值比(OR):0.19,95%置信区间(CI):0.04-0.85,P=0.030]、血小板(PLT)(OR:0.19,95%CI:0.04-0.85,P=0.030)、PLR(OR:0.18,95%CI:0.04-0.90,P=0.036)和肿瘤分级(OR:9.24,95%CI:1.89-45.07,P=0.006)是 NAC 后 pCR 的独立预测因素。基于 WBC、PLR、PLR 和肿瘤分级的列线图预测模型显示出良好的预测能力。

结论

PLR、PLT、WBC 和肿瘤分级是 NAC 后 BC 患者 pCR 的独立预测因素。基于上述阳性因素的列线图显示出良好的预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1577/10015959/6c97e1ed30b3/12885_2023_10703_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验