Suppr超能文献

贝叶斯序贯约束自适应设计在评价亚组特异性治疗效果的Ⅱ期临床试验中的应用。

Bayesian order constrained adaptive design for phase II clinical trials evaluating subgroup-specific treatment effect.

机构信息

Department of Biostatistics and Health Data Science, Indiana University, Indianapolis, IN, USA.

Eli Lilly and Company, Indianapolis, IN, USA.

出版信息

Stat Methods Med Res. 2023 May;32(5):885-894. doi: 10.1177/09622802231158738. Epub 2023 Mar 15.

Abstract

The "one-size-fits-all'' paradigm is inappropriate for phase II clinical trials evaluating biotherapies, which are often expected to have substantial heterogeneous treatment effects among different subgroups defined by biomarker. For these biotherapies, the objective of phase II clinical trials is often to evaluate subgroup-specific treatment effects. In this article, we propose a simple yet efficient Bayesian adaptive phase II biomarker-guided design, referred to as the Bayesian-order constrained adaptive design, to detect the subgroup-specific treatment effects of biotherapies. The Bayesian order constrained adaptive design combines the features of the enrichment design and sequential design. It starts with a "all-comers" stage, and subsequently switches to an enrichment stage for either the marker-positive subgroup or marker-negative subgroup, depending on the interim analysis results. The go/no go enrichment criteria are determined by two posterior probabilities utilizing the inherent ordering constraint between two subgroups. We also extend the Bayesian-order constrained adaptive design to handle the missing biomarker situation. We conducted comprehensive computer simulation studies to investigate the operating characteristics of the Bayesian order constrained adaptive design, and compared it with other existing and conventional designs. The results shown that the Bayesian order constrained adaptive design yielded the best overall performance in detecting the subgroup-specific treatment effects by jointly considering the efficiency and cost-effectiveness of the trials. The software for simulation and trial implementation are available for free download.

摘要

“一刀切”的范式不适合用于评估生物疗法的 II 期临床试验,因为生物疗法通常预期在基于生物标志物定义的不同亚组中具有显著的异质治疗效果。对于这些生物疗法,II 期临床试验的目的通常是评估亚组特异性的治疗效果。在本文中,我们提出了一种简单而有效的贝叶斯自适应 II 期生物标志物指导设计,称为贝叶斯序贯约束自适应设计,用于检测生物疗法的亚组特异性治疗效果。贝叶斯序贯约束自适应设计结合了富集设计和序贯设计的特点。它从“全体入组”阶段开始,然后根据中期分析结果,切换到针对标记阳性亚组或标记阴性亚组的富集阶段。去留富集标准由两个后验概率确定,利用两个亚组之间固有的排序约束。我们还将贝叶斯序贯约束自适应设计扩展到处理缺失的生物标志物情况。我们进行了全面的计算机模拟研究,以研究贝叶斯序贯约束自适应设计的操作特征,并将其与其他现有的和传统的设计进行了比较。结果表明,贝叶斯序贯约束自适应设计通过综合考虑试验的效率和成本效益,在检测亚组特异性治疗效果方面表现出最佳的整体性能。模拟和试验实施的软件可免费下载。

相似文献

3
ASIED: a Bayesian adaptive subgroup-identification enrichment design.ASIED:一种贝叶斯自适应亚组识别富集设计。
J Biopharm Stat. 2020 Jul 3;30(4):623-638. doi: 10.1080/10543406.2019.1696356. Epub 2019 Nov 29.

本文引用的文献

7
An optimal stratified Simon two-stage design.一种优化的分层西蒙两阶段设计。
Pharm Stat. 2016 Jul;15(4):333-40. doi: 10.1002/pst.1742. Epub 2016 Mar 2.
8
Precision immunology: the promise of immunotherapy for the treatment of cancer.精准免疫学:免疫疗法治疗癌症的前景。
J Clin Oncol. 2015 Apr 20;33(12):1315-7. doi: 10.1200/JCO.2014.59.6023. Epub 2015 Jan 20.
9
Adaptive enrichment designs for clinical trials.临床试验的适应性富集设计。
Biostatistics. 2013 Sep;14(4):613-25. doi: 10.1093/biostatistics/kxt010. Epub 2013 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验