Suppr超能文献

贝叶斯适应性随机分组设计在靶向药物研发中的应用

Bayesian adaptive randomization designs for targeted agent development.

机构信息

Department of Biostatistics, The University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA.

出版信息

Clin Trials. 2010 Oct;7(5):584-96. doi: 10.1177/1740774510373120. Epub 2010 Jun 22.

Abstract

BACKGROUND

With better understanding of the disease's etiology and mechanism, many targeted agents are being developed to tackle the root cause of problems, hoping to offer more effective and less toxic therapies. Targeted agents, however, do not work for everyone. Hence, the development of target agents requires the evaluation of prognostic and predictive markers. In addition, upon the identification of each patient's marker profile, it is desirable to treat patients with best available treatments in the clinical trial accordingly.

METHODS

Many designs have recently been proposed for the development of targeted agents. These include the simple randomization design, marker stratified design, marker strategy design, efficient targeted design, etc. In contrast to the frequentist designs with equal randomization, we propose novel Bayesian adaptive randomization designs that allow evaluating treatments and markers simultaneously, while providing more patients with effective treatments according to the patients' marker profiles. Early stopping rules can be implemented to increase the efficiency of the designs.

RESULTS

Through simulations, the operating characteristics of different designs are compared and contrasted. By carefully choosing the design parameters, types I and II errors can be controlled for Bayesian designs. By incorporating adaptive randomization and early stopping rules, the proposed designs incorporate rational learning from the interim data to make informed decisions. Bayesian design also provides a formal way to incorporate relevant prior information. Compared with previously published designs, the proposed design can be more efficient, more ethical, and is also more flexible in the study conduct.

LIMITATIONS

Response adaptive randomization requires the response to be assessed in a relatively short time period. The infrastructure must be set up to allow timely and more frequent monitoring of interim results.

CONCLUSION

Bayesian adaptive randomization designs are distinctively suitable for the development of multiple targeted agents with multiple biomarkers.

摘要

背景

随着对疾病病因和发病机制的深入了解,许多靶向药物被开发出来,以解决问题的根本原因,希望提供更有效、毒性更小的治疗方法。然而,靶向药物并不适用于所有人。因此,靶向药物的开发需要评估预后和预测标志物。此外,在确定每位患者的标志物特征后,理想情况下应根据临床试验中可用的最佳治疗方法对患者进行治疗。

方法

最近提出了许多用于开发靶向药物的设计方案。这些方案包括简单随机化设计、标志物分层设计、标志物策略设计、高效靶向设计等。与具有均等随机化的频率派设计不同,我们提出了新颖的贝叶斯自适应随机化设计,这些设计可以同时评估治疗方法和标志物,同时根据患者的标志物特征为更多患者提供有效治疗。可以实施早期停止规则以提高设计的效率。

结果

通过模拟,比较和对比了不同设计的操作特征。通过仔细选择设计参数,可以控制贝叶斯设计的 I 型和 II 型错误。通过结合自适应随机化和早期停止规则,所提出的设计可以从中间数据中进行合理的学习,从而做出明智的决策。贝叶斯设计还为纳入相关先验信息提供了一种正式的方法。与以前发表的设计相比,所提出的设计可以更有效、更符合伦理,并且在研究实施中也更加灵活。

局限性

响应自适应随机化要求在相对较短的时间内评估响应。必须建立基础设施,以允许及时和更频繁地监测中期结果。

结论

贝叶斯自适应随机化设计非常适合开发具有多个生物标志物的多种靶向药物。

相似文献

1
Bayesian adaptive randomization designs for targeted agent development.
Clin Trials. 2010 Oct;7(5):584-96. doi: 10.1177/1740774510373120. Epub 2010 Jun 22.
3
A Bayesian adaptive design with biomarkers for targeted therapies.
Clin Trials. 2010 Oct;7(5):546-56. doi: 10.1177/1740774510372657. Epub 2010 Jun 22.
4
A comparison of Bayesian adaptive randomization and multi-stage designs for multi-arm clinical trials.
Stat Med. 2014 Jun 15;33(13):2206-21. doi: 10.1002/sim.6086. Epub 2014 Jan 14.
5
A Bayesian decision-theoretic sequential response-adaptive randomization design.
Stat Med. 2013 May 30;32(12):1975-94. doi: 10.1002/sim.5735. Epub 2013 Jan 13.
6
Bayesian Two-stage Biomarker-based Adaptive Design for Targeted Therapy Development.
Stat Biosci. 2016 Jun;8(1):99-128. doi: 10.1007/s12561-014-9124-2. Epub 2014 Dec 4.
7
Simulation study for evaluating the performance of response-adaptive randomization.
Contemp Clin Trials. 2015 Jan;40:15-25. doi: 10.1016/j.cct.2014.11.006. Epub 2014 Nov 11.
8
Frequentist operating characteristics of Bayesian optimal designs via simulation.
Stat Med. 2019 Sep 20;38(21):4026-4039. doi: 10.1002/sim.8279. Epub 2019 Jun 19.
9
Do we need to adjust for interim analyses in a Bayesian adaptive trial design?
BMC Med Res Methodol. 2020 Jun 10;20(1):150. doi: 10.1186/s12874-020-01042-7.

引用本文的文献

1
A Biomarker Signature-Guided Clinical Trial Design for Precision Medicine.
Stat Med. 2025 May;44(10-12):e70103. doi: 10.1002/sim.70103.
2
A methodological assessment of randomization integrity in alteplase for acute ischemic stroke individual patient data meta-analyses.
PLoS One. 2025 Mar 19;20(3):e0315342. doi: 10.1371/journal.pone.0315342. eCollection 2025.
3
Simulation study for evaluating an adaptive-randomisation Bayesian hybrid trial design with enrichment.
Contemp Clin Trials Commun. 2023 Apr 14;33:101141. doi: 10.1016/j.conctc.2023.101141. eCollection 2023 Jun.
4
Bayesian order constrained adaptive design for phase II clinical trials evaluating subgroup-specific treatment effect.
Stat Methods Med Res. 2023 May;32(5):885-894. doi: 10.1177/09622802231158738. Epub 2023 Mar 15.
5
Optimizing a Bayesian hierarchical adaptive platform trial design for stroke patients.
Trials. 2022 Sep 6;23(1):754. doi: 10.1186/s13063-022-06664-4.
6
Application of machine learning methods in clinical trials for precision medicine.
JAMIA Open. 2022 Feb 8;5(1):ooab107. doi: 10.1093/jamiaopen/ooab107. eCollection 2022 Apr.
7
A clinical trial design with covariate-adjusted response-adaptive randomization using superiority confidence of treatments.
Stat Biopharm Res. 2019;11(4):336-347. doi: 10.1080/19466315.2019.1647279. Epub 2019 Sep 24.
8
A Signature Enrichment Design with Bayesian Adaptive Randomization.
J Appl Stat. 2021;48(6):1091-1110. doi: 10.1080/02664763.2020.1757048. Epub 2020 Apr 27.
9
Biomarker-Driven Oncology Clinical Trials: Key Design Elements, Types, Features, and Practical Considerations.
JCO Precis Oncol. 2019 Oct 24;3. doi: 10.1200/PO.19.00086. eCollection 2019.
10
Randomized Controlled Trials.
Chest. 2020 Jul;158(1S):S79-S87. doi: 10.1016/j.chest.2020.03.013.

本文引用的文献

1
Somatic EGFR mutation and gene copy gain as predictive biomarkers for response to tyrosine kinase inhibitors in non-small cell lung cancer.
Clin Cancer Res. 2010 Jan 1;16(1):291-303. doi: 10.1158/1078-0432.CCR-09-1660. Epub 2009 Dec 22.
2
3
Bayesian clinical trials at the University of Texas M. D. Anderson Cancer Center.
Clin Trials. 2009 Jun;6(3):205-16. doi: 10.1177/1740774509104992.
4
Bayesian clinical trials: no more excuses.
Clin Trials. 2009 Jun;6(3):203-4. doi: 10.1177/1740774509105374.
5
Predictive biomarkers in the development of oncology drugs: a therapeutic industry perspective.
Clin Pharmacol Ther. 2009 May;85(5):535-8. doi: 10.1038/clpt.2009.9. Epub 2009 Mar 18.
6
Role of biologic therapy and chemotherapy in hormone receptor- and HER2-positive breast cancer.
Ann Oncol. 2009 Jun;20(6):993-9. doi: 10.1093/annonc/mdn739. Epub 2009 Jan 15.
7
Erlotinib after Gefitinib failure in female never-smoker Asian patients with pulmonary adenocarcinoma.
Lung Cancer. 2009 Aug;65(2):204-7. doi: 10.1016/j.lungcan.2008.11.006. Epub 2008 Dec 24.
8
Toward a cure for chronic myeloid leukemia.
Clin Cancer Res. 2008 Dec 15;14(24):7971-4. doi: 10.1158/1078-0432.CCR-08-1486.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验