Suppr超能文献

解析尖晶石锂离子正极材料中不同位点哈伯德相互作用的影响。

Unraveling the effects of inter-site Hubbard interactions in spinel Li-ion cathode materials.

作者信息

Timrov Iurii, Kotiuga Michele, Marzari Nicola

机构信息

Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

出版信息

Phys Chem Chem Phys. 2023 Mar 29;25(13):9061-9072. doi: 10.1039/d3cp00419h.

Abstract

Accurate first-principles predictions of the structural, electronic, magnetic, and electrochemical properties of cathode materials can be key in the design of novel efficient Li-ion batteries. Spinel-type cathode materials LiMnO and LiMnNiO are promising candidates for Li-ion battery technologies, but they present serious challenges when it comes to their first-principles modeling. Here, we use density-functional theory with extended Hubbard functionals-DFT++ with on-site and inter-site Hubbard interactions-to study the properties of these transition-metal oxides. The Hubbard parameters are computed from first-principles using density-functional perturbation theory. We show that while is crucial to obtain the right trends in properties of these materials, is essential for a quantitative description of the structural and electronic properties, as well as the Li-intercalation voltages. This work paves the way for reliable first-principles studies of other families of cathode materials without relying on empirical fitting or calibration procedures.

摘要

准确地从第一性原理预测阴极材料的结构、电子、磁性和电化学性质,可能是设计新型高效锂离子电池的关键。尖晶石型阴极材料LiMnO和LiMnNiO是锂离子电池技术中很有前景的候选材料,但在进行第一性原理建模时,它们面临着严峻的挑战。在此,我们使用带有扩展哈伯德泛函的密度泛函理论——具有在位和位间哈伯德相互作用的DFT++——来研究这些过渡金属氧化物的性质。哈伯德参数使用密度泛函微扰理论从第一性原理计算得出。我们表明,虽然 对于获得这些材料性质的正确趋势至关重要,但 对于结构和电子性质以及锂嵌入电压的定量描述必不可少。这项工作为其他阴极材料家族的可靠第一性原理研究铺平了道路,而无需依赖经验拟合或校准程序。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验