Binci Luca, Marzari Nicola, Timrov Iurii
Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
Present Address: Department of Materials Science & Engineering, University of California Berkeley, Berkeley, CA 94720 USA.
NPJ Comput Mater. 2025;11(1):100. doi: 10.1038/s41524-025-01570-0. Epub 2025 Apr 16.
Spin excitations play a fundamental role in understanding magnetic properties of materials, and have significant technological implications for magnonic devices. However, accurately modeling these in transition-metal and rare-earth compounds remains a formidable challenge. Here, we present a fully first-principles approach for calculating spin-wave spectra based on time-dependent (TD) density-functional perturbation theory (DFPT), using nonempirical Hubbard functionals. This approach is implemented in a general noncollinear formulation, enabling the study of magnons in both collinear and noncollinear magnetic systems. Unlike methods that rely on empirical Hubbard parameters to describe the ground state, and Heisenberg Hamiltonians for describing magnetic excitations, the methodology developed here probes directly the dynamical spin susceptibility (efficiently evaluated with TDDFPT throught the Liouville-Lanczos approach), and treats the linear variation of the Hubbard augmentation (in itself calculated non-empirically) in full at a self-consistent level. Furthermore, the method satisfies the Goldstone condition without requiring empirical rescaling of the exchange-correlation kernel or explicit enforcement of sum rules, in contrast to existing state-of-the-art techniques. We benchmark the novel computational scheme on prototypical transition-metal monoxides NiO and MnO, showing remarkable agreement with experiments and highlighting the fundamental role of these newly implemented Hubbard corrections. The method holds great promise for describing collective spin excitations in complex materials containing localized electronic states.
自旋激发在理解材料的磁性方面起着基础性作用,并且对磁子器件具有重要的技术意义。然而,在过渡金属和稀土化合物中对这些进行精确建模仍然是一项艰巨的挑战。在此,我们提出一种基于含时(TD)密度泛函微扰理论(DFPT)的全第一性原理方法来计算自旋波谱,使用非经验的哈伯德泛函。该方法以一般的非共线形式实现,能够研究共线和非共线磁系统中的磁子。与依赖经验哈伯德参数描述基态以及海森堡哈密顿量描述磁激发的方法不同,这里开发的方法直接探测动态自旋磁化率(通过刘维尔 - 兰佐斯方法用TDDFPT有效评估),并在自洽水平上完全处理哈伯德增强的线性变化(其本身是非经验计算的)。此外,与现有最先进技术相比,该方法满足戈德斯通条件,无需对交换 - 关联核进行经验性重新缩放或明确实施求和规则。我们在典型的过渡金属氧化物NiO和MnO上对这种新颖的计算方案进行基准测试,结果与实验显示出显著的一致性,并突出了这些新实施的哈伯德修正的基础性作用。该方法在描述包含局域电子态的复杂材料中的集体自旋激发方面具有很大的潜力。