Uhrin Martin, Zadoks Austin, Binci Luca, Marzari Nicola, Timrov Iurii
Theory and Simulation of Materials (THEOS), and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Université Grenoble Alpes, St Martin D'Heres, France.
NPJ Comput Mater. 2025;11(1):19. doi: 10.1038/s41524-024-01501-5. Epub 2025 Jan 25.
Density-functional theory with extended Hubbard functionals (DFT + + ) provides a robust framework to accurately describe complex materials containing transition-metal or rare-earth elements. It does so by mitigating self-interaction errors inherent to semi-local functionals which are particularly pronounced in systems with partially-filled d and f electronic states. However, achieving accuracy in this approach hinges upon the accurate determination of the on-site and inter-site Hubbard parameters. In practice, these are obtained either by semi-empirical tuning, requiring prior knowledge, or, more correctly, by using predictive but expensive first-principles calculations. Here, we present a machine learning model based on equivariant neural networks which uses atomic occupation matrices as descriptors, directly capturing the electronic structure, local chemical environment, and oxidation states of the system at hand. We target here the prediction of Hubbard parameters computed self-consistently with iterative linear-response calculations, as implemented in density-functional perturbation theory (DFPT), and structural relaxations. Remarkably, when trained on data from 12 materials spanning various crystal structures and compositions, our model achieves mean absolute relative errors of 3% and 5% for Hubbard and parameters, respectively. By circumventing computationally expensive DFT or DFPT self-consistent protocols, our model significantly expedites the prediction of Hubbard parameters with negligible computational overhead, while approaching the accuracy of DFPT. Moreover, owing to its robust transferability, the model facilitates accelerated materials discovery and design via high-throughput calculations, with relevance for various technological applications.
具有扩展哈伯德泛函的密度泛函理论(DFT + +)提供了一个强大的框架,用于准确描述包含过渡金属或稀土元素的复杂材料。它通过减轻半局域泛函固有的自相互作用误差来实现这一点,这种误差在具有部分填充d和f电子态的系统中尤为明显。然而,这种方法的准确性取决于在位和位间哈伯德参数的准确确定。在实践中,这些参数要么通过需要先验知识的半经验调整获得,要么更准确地说,通过使用预测性但昂贵的第一性原理计算获得。在这里,我们提出了一种基于等变神经网络的机器学习模型,该模型使用原子占据矩阵作为描述符,直接捕捉手头系统的电子结构、局部化学环境和氧化态。我们的目标是预测通过密度泛函微扰理论(DFPT)中实现的迭代线性响应计算自洽计算得到的哈伯德参数以及结构弛豫。值得注意的是,当在来自12种具有各种晶体结构和组成的材料的数据上进行训练时,我们的模型对于哈伯德参数 和 的平均绝对相对误差分别达到了3%和5%。通过规避计算成本高昂的DFT或DFPT自洽协议,我们的模型显著加快了哈伯德参数的预测,计算开销可忽略不计,同时接近DFPT的精度。此外,由于其强大的可转移性,该模型通过高通量计算促进了加速材料发现和设计,与各种技术应用相关。