Suppr超能文献

基于 MRI 的深度学习技术预测 2-4 级成人胶质瘤的异柠檬酸脱氢酶和 1p/19q 状态。

MRI-based deep learning techniques for the prediction of isocitrate dehydrogenase and 1p/19q status in grade 2-4 adult gliomas.

机构信息

Melbourne Medical School, The University of Melbourne, Melbourne, Victoria, Australia.

Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.

出版信息

J Med Imaging Radiat Oncol. 2023 Aug;67(5):492-498. doi: 10.1111/1754-9485.13522. Epub 2023 Mar 15.

Abstract

Molecular biomarkers are becoming increasingly important in the classification of intracranial gliomas. While tissue sampling remains the gold standard, there is growing interest in the use of deep learning (DL) techniques to predict these markers. This narrative review with a systematic approach identifies and synthesises the current published data on DL techniques using conventional MRI sequences for predicting isocitrate dehydrogenase (IDH) and 1p/19q-codeletion status in World Health Organisation grade 2-4 gliomas. Three databases were searched for relevant studies. In all, 13 studies met the inclusion criteria after exclusions. Key results, limitations and discrepancies between studies were synthesised. High accuracy has been reported in some studies, but the existing literature has several limitations, including generally small cohort sizes, a paucity of studies with independent testing cohorts and a lack of studies assessing IDH and 1p/19q together. While DL shows promise as a non-invasive means of predicting glioma genotype, addressing these limitations in future research will be important for facilitating clinical translation.

摘要

分子生物标志物在颅内胶质瘤的分类中变得越来越重要。虽然组织采样仍然是金标准,但人们越来越感兴趣的是使用深度学习(DL)技术来预测这些标志物。本综述通过系统的方法,确定并综合了目前使用常规 MRI 序列预测世界卫生组织(WHO)分级 2-4 级胶质瘤中异柠檬酸脱氢酶(IDH)和 1p/19q 缺失状态的 DL 技术的已发表数据。对三个数据库进行了相关研究的检索。在排除后,共有 13 项研究符合纳入标准。综合了关键结果、研究之间的局限性和差异。一些研究报告了较高的准确性,但现有文献存在几个局限性,包括一般来说队列规模较小,缺乏具有独立测试队列的研究,以及缺乏同时评估 IDH 和 1p/19q 的研究。虽然 DL 作为一种非侵入性预测胶质瘤基因型的手段显示出了前景,但在未来的研究中解决这些局限性对于促进临床转化将是重要的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验