Suppr超能文献

基于机器的深度学习在放射学诊断为2级或3级成人型弥漫性胶质瘤患者中的临床应用

Clinical application of machine-based deep learning in patients with radiologically presumed adult-type diffuse glioma grades 2 or 3.

作者信息

Gómez Vecchio Tomás, Neimantaite Alice, Thurin Erik, Furtner Julia, Solheim Ole, Pallud Johan, Berger Mitchel, Widhalm Georg, Bartek Jiri, Häggström Ida, Gu Irene Y H, Jakola Asgeir Store

机构信息

Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Department of Radiology, Sahlgrenska University Hospital, Gothenburg, Sweden.

出版信息

Neurooncol Adv. 2024 Nov 10;6(1):vdae192. doi: 10.1093/noajnl/vdae192. eCollection 2024 Jan-Dec.

Abstract

BACKGROUND

Radiologically presumed diffuse lower-grade glioma (dLGG) are typically non or minimal enhancing tumors, with hyperintensity in T2w-images. The aim of this study was to test the clinical usefulness of deep learning (DL) in mutation prediction in patients with radiologically presumed dLGG.

METHODS

Three hundred and fourteen patients were retrospectively recruited from 6 neurosurgical departments in Sweden, Norway, France, Austria, and the United States. Collected data included patients' age, sex, tumor molecular characteristics (, and 1p19q), and routine preoperative radiological images. A clinical model was built using multivariable logistic regression with the variables age and tumor location. DL models were built using MRI data only, and 4 DL architectures used in glioma research. In the final validation test, the clinical model and the best DL model were scored on an external validation cohort with 155 patients from the Erasmus Glioma Dataset.

RESULTS

The mean age in the recruited and external cohorts was 45.0 (SD 14.3) and 44.3 years (SD 14.6). The cohorts were rather similar, except for sex distribution (53.5% vs 64.5% males, -value = .03) and status (30.9% vs 12.9% wild-type, -value <.01). Overall, the area under the curve for the prediction of mutations in the external validation cohort was 0.86, 0.82, and 0.87 for the clinical model, the DL model, and the model combining both models' probabilities.

CONCLUSIONS

In their current state, when these complex models were applied to our clinical scenario, they did not seem to provide a net gain compared to our baseline clinical model.

摘要

背景

放射学诊断为弥漫性低级别胶质瘤(dLGG)的肿瘤通常无强化或仅有轻微强化,在T2加权图像上呈高信号。本研究旨在测试深度学习(DL)在放射学诊断为dLGG患者的突变预测中的临床实用性。

方法

从瑞典、挪威、法国、奥地利和美国的6个神经外科科室回顾性招募了314例患者。收集的数据包括患者的年龄、性别、肿瘤分子特征(,以及1p19q)和术前常规放射学图像。使用年龄和肿瘤位置变量通过多变量逻辑回归建立临床模型。仅使用MRI数据构建DL模型,并使用胶质瘤研究中使用的4种DL架构。在最终验证测试中,在来自伊拉斯谟胶质瘤数据集的155例患者的外部验证队列中对临床模型和最佳DL模型进行评分。

结果

招募队列和外部队列的平均年龄分别为45.0岁(标准差14.3)和44.3岁(标准差14.6)。除性别分布(男性分别为53.5%和64.5%,-值=.03)和状态(野生型分别为30.9%和12.9%,-值<.01)外,两个队列相当相似。总体而言,在外部验证队列中,临床模型、DL模型以及结合两个模型概率的模型预测突变的曲线下面积分别为0.86、0.82和0.87。

结论

在当前状态下,当将这些复杂模型应用于我们的临床场景时,与我们的基线临床模型相比,它们似乎并未提供净收益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验