Hooker Casey A, Hanafy Radwa, Hillman Ethan T, Muñoz Briones Javier, Solomon Kevin V
Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, United States.
Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States.
ACS Synth Biol. 2023 Apr 21;12(4):1034-1045. doi: 10.1021/acssynbio.2c00502. Epub 2023 Mar 15.
Anaerobic fungi are powerful platforms for biotechnology that remain unexploited due to a lack of genetic tools. These gut fungi encode the largest number of lignocellulolytic carbohydrate active enzymes (CAZymes) in the fungal kingdom, making them attractive for applications in renewable energy and sustainability. However, efforts to genetically modify anaerobic fungi have remained limited due to inefficient methods for DNA uptake and a lack of characterized genetic parts. We demonstrate that anaerobic fungi are naturally competent for DNA and leverage this to develop a nascent genetic toolbox informed by recently acquired genomes for transient transformation of anaerobic fungi. We validate multiple selectable markers (HygR and Neo), an anaerobic reporter protein (iRFP702), enolase and TEF1A promoters, TEF1A terminator, and a nuclear localization tag for protein compartmentalization. This work establishes novel methods to reliably transform the anaerobic fungus , thereby paving the way for strain development and various synthetic biology applications.
厌氧真菌是生物技术的强大平台,但由于缺乏遗传工具而未得到开发。这些肠道真菌编码真菌界中数量最多的木质纤维素分解碳水化合物活性酶(CAZymes),使其在可再生能源和可持续性应用方面具有吸引力。然而,由于DNA摄取方法效率低下以及缺乏特征明确的遗传元件,对厌氧真菌进行基因改造的努力仍然有限。我们证明厌氧真菌天然具有DNA感受态,并利用这一点开发了一个新生的遗传工具箱,该工具箱以最近获得的基因组为依据,用于厌氧真菌的瞬时转化。我们验证了多个选择标记(HygR和Neo)、一种厌氧报告蛋白(iRFP702)、烯醇化酶和TEF1A启动子、TEF1A终止子以及用于蛋白质区室化的核定位标签。这项工作建立了可靠转化厌氧真菌的新方法,从而为菌株开发和各种合成生物学应用铺平了道路。