Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, Indiana, USA.
Purdue University Interdisciplinary Life Sciences (PULSe) Program, Purdue University, West Lafayette, Indiana, USA.
Biotechnol Prog. 2021 Sep;37(5):e3172. doi: 10.1002/btpr.3172. Epub 2021 May 15.
Development of the bioeconomy is driven by our ability to access the energy-rich carbon trapped in recalcitrant plant materials. Current strategies to release this carbon rely on expensive enzyme cocktails and physicochemical pretreatment, producing inhibitory compounds that hinder subsequent microbial bioproduction. Anaerobic fungi are an appealing solution as they hydrolyze crude, untreated biomass at ambient conditions into sugars that can be converted into value-added products by partner organisms. However, some carbon is lost to anaerobic fungal fermentation products. To improve efficiency and recapture this lost carbon, we built a two-stage bioprocessing system pairing the anaerobic fungus Piromyces indianae with the yeast Kluyveromyces marxianus, which grows on a wide range of sugars and fermentation products. In doing so we produce fine and commodity chemicals directly from untreated lignocellulose. P. indianae efficiently hydrolyzed substrates such as corn stover and poplar to generate sugars, fermentation acids, and ethanol, which K. marxianus consumed while producing 2.4 g/L ethyl acetate. An engineered strain of K. marxianus was also able to produce 550 mg/L 2-phenylethanol and 150 mg/L isoamyl alcohol from P. indianae hydrolyzed lignocellulosic biomass. Despite the use of crude untreated plant material, production yields were comparable to optimized rich yeast media due to the use of all available carbon including organic acids, which formed up to 97% of free carbon in the fungal hydrolysate. This work demonstrates that anaerobic fungal pretreatment of lignocellulose can sustain the production of fine chemicals at high efficiency by partnering organisms with broad substrate versatility.
生物经济的发展取决于我们获取储存在顽固植物材料中富含能量的碳的能力。目前,释放这种碳的策略依赖于昂贵的酶混合物和物理化学预处理,产生抑制微生物生物生产的化合物。产甲烷真菌是一种有吸引力的解决方案,因为它们在环境条件下将未经处理的粗生物质水解成糖,然后由共生生物将其转化为增值产品。然而,一些碳会损失于产甲烷真菌发酵产物中。为了提高效率并回收这些丢失的碳,我们构建了一个两阶段生物处理系统,将厌氧真菌 Piromyces indianae 与酵母 Kluyveromyces marxianus 配对,后者可以利用广泛的糖和发酵产物生长。通过这种方式,我们可以直接从未经处理的木质纤维素生产精细化学品和商品化学品。P. indianae 有效地水解玉米秸秆和杨树等底物,生成糖、发酵酸和乙醇,而 K. marxianus 在消耗这些物质的同时产生 2.4 g/L 的乙酸乙酯。经过工程改造的 K. marxianus 菌株也能够从 P. indianae 水解的木质纤维素生物质中生产 550 mg/L 的 2-苯乙醇和 150 mg/L 的异戊醇。尽管使用了未经处理的粗植物材料,但由于使用了包括有机酸在内的所有可用碳,生产产量与优化后的富含酵母的培养基相当,有机酸在真菌水解物中形成高达 97%的游离碳。这项工作表明,厌氧真菌对木质纤维素的预处理可以通过具有广泛底物通用性的共生生物以高效率维持精细化学品的生产。