Suppr超能文献

烷烃固-液和固-固相转变的分子动力学力场基准测试。

Benchmarking of Molecular Dynamics Force Fields for Solid-Liquid and Solid-Solid Phase Transitions in Alkanes.

机构信息

Chemical Engineering and Renewable Energy, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, U.K.

Mathematical Sciences, University of Southampton, Southampton SO17 1BJ, U.K.

出版信息

J Phys Chem B. 2021 May 20;125(19):5145-5159. doi: 10.1021/acs.jpcb.0c07587. Epub 2021 Mar 16.

Abstract

Accurate prediction of alkane phase transitions involving solids is needed to prevent catastrophic pipeline blockages, improve lubrication formulations, smart insulation, and energy storage, as well as bring fundamental understanding to processes such as artificial morphogenesis. However, simulation of these transitions is challenging and therefore often omitted in force field development. Here, we perform a series of benchmarks on seven representative molecular dynamics models (TraPPE, PYS, CHARMM36, L-OPLS, COMPASS, Williams, and the newly optimized Williams 7B), comparing with experimental data for liquid properties, liquid-solid, and solid-solid phase transitions of two prototypical alkanes, -pentadecane (C) and -hexadecane (C). We find that existing models overestimate the melting points by up to 34 K, with PYS and Williams 7B yielding the most accurate results deviating only 2 and 3 K from the experiment. We specially design order parameters to identify crystal-rotator phase transitions in alkanes. United-atom models could only produce a rotator phase with complete rotational disorder, whereas all-atom models using a 12-6 Lennard-Jones potential show no rotator phase even when superheated above the melting point. In contrast, Williams (Buckingham potential) and COMPASS (9-6 Lennard-Jones) reproduce the crystal-to-rotator phase transition, with the optimized Williams 7B model having the most accurate crystal-rotator transition temperature of C.

摘要

准确预测涉及固体的烷烃相转变对于防止灾难性的管道堵塞、改进润滑配方、智能隔热和储能以及为人工形态发生等过程带来基本理解是必要的。然而,这些转变的模拟具有挑战性,因此在力场开发中经常被省略。在这里,我们对七个有代表性的分子动力学模型(TraPPE、PYS、CHARMM36、L-OPLS、COMPASS、Williams 和新优化的 Williams 7B)进行了一系列基准测试,将其与两种典型烷烃(-十五烷(C)和-十六烷(C)的液体性质、液-固和固-固相转变的实验数据进行了比较。我们发现,现有的模型高估了熔点,最高可达 34 K,其中 PYS 和 Williams 7B 的结果最准确,仅偏离实验值 2 和 3 K。我们特别设计了序参数来识别烷烃中的晶-旋转相转变。统一原子模型只能产生完全旋转无序的旋转相,而所有原子模型即使在过热超过熔点时也没有旋转相。相比之下,Williams(Buckingham 势)和 COMPASS(9-6 Lennard-Jones 势)再现了晶体到旋转相转变,优化后的 Williams 7B 模型具有最准确的 C 晶体-旋转相转变温度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验