Suppr超能文献

新生儿身体成分预测模型:系统评价。

Predictive models of newborn body composition: a systematic review.

机构信息

Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Ferreira, Rio de Janeiro, RJ, Brazil.

Instituto Fernandes Figueira, Rio de Janeiro, RJ, Brazil.

出版信息

Rev Paul Pediatr. 2023 Mar 13;41:e2020365. doi: 10.1590/1984-0462/2023/41/2020365. eCollection 2023.

Abstract

OBJECTIVE

To analyze the prediction models of fat-free mass and fat mass of neonates who had air displacement plethysmography as a reference test.

DATA SOURCE

A systematic review of studies identified in the PubMed, Virtual Health Library (BVS), SciELO, and ScienceDirect databases was carried out. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist was used for inclusion of studies, the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) report was used to select only predictive models studies, and the Prediction Model Risk of Bias Assessment Tool (PROBAST) was used to assess the risk of bias in the models.

DATA SYNTHESIS

This study is registered in PROSPERO with identification CRD42020175048. Five hundred and three studies were found during the searches, and only four papers (six models) were eligible. Most studies (three) used the sum of different skinfolds to predict neonatal body fat and all presented weight as the variable with the highest contribution to predicting neonatal body composition. Two models that used skinfolds showed high coefficients of determination and explained, significantly, 81% of the body fat measured by air displacement plethysmography, while the models using bioimpedance did not find a significant correlation between the impedance index and the fat-free mass.

CONCLUSIONS

The few studies found on this topic had numerous methodological differences. However, the subscapular skinfold was a strong predictor of neonatal body fat in three studies. It is noteworthy that such model validation studies should be carried out in the future, allowing them to be subsequently applied to the population. The development of these models with low-cost tools will contribute to better nutritional monitoring of children and could prevent complications in adulthood.

摘要

目的

分析以空气置换体积描记法为参考测试的新生儿去脂体重和脂肪量的预测模型。

资料来源

对 PubMed、虚拟卫生图书馆(BVS)、SciELO 和 ScienceDirect 数据库中确定的研究进行了系统评价。使用《系统评价和荟萃分析的首选报告项目》(PRISMA)清单纳入研究,使用《用于个体预后或诊断的多变量预测模型透明报告》(TRIPOD)报告选择仅预测模型研究,并使用《预测模型风险偏倚评估工具》(PROBAST)评估模型的偏倚风险。

综合数据

本研究已在 PROSPERO 中注册,识别号为 CRD42020175048。在搜索过程中发现了 503 项研究,只有 4 篇论文(6 个模型)符合条件。大多数研究(3 项)使用不同皮褶的总和来预测新生儿体脂肪,所有研究均将体重作为预测新生儿身体成分的最高贡献变量。两个使用皮褶的模型显示出较高的决定系数,并显著解释了空气置换体积描记法测量的体脂肪的 81%,而使用生物阻抗的模型未发现阻抗指数与去脂体重之间存在显著相关性。

结论

关于这个主题的研究很少,方法学差异很大。然而,三个研究中的肩胛下皮褶是新生儿体脂肪的有力预测指标。值得注意的是,未来应该进行这些模型的验证研究,以便随后将其应用于人群。开发这些具有低成本工具的模型将有助于更好地监测儿童的营养状况,并可预防成年期的并发症。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef9e/10014017/5e950f7769b3/1984-0462-rpp-41-e2020365-gf1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验