文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能和机器学习在介入心脏病学中的作用。

Role of Artificial Intelligence and Machine Learning in Interventional Cardiology.

机构信息

Department of Cardiology, Maqsood Medical Complex, Peshawar, Pakistan.

Department of Electrophysiology, Armed Forces Institute of Cardiology, Rawalpindi, Pakistan.

出版信息

Curr Probl Cardiol. 2023 Jul;48(7):101698. doi: 10.1016/j.cpcardiol.2023.101698. Epub 2023 Mar 14.


DOI:10.1016/j.cpcardiol.2023.101698
PMID:36921654
Abstract

Directed by 2 decades of technological processes and remodeling, the dynamic quality of healthcare data combined with the progress of computational power has allowed for rapid progress in artificial intelligence (AI). In interventional cardiology, artificial intelligence has shown potential in providing data interpretation and automated analysis from electrocardiogram, echocardiography, computed tomography angiography, magnetic resonance imaging, and electronic patient data. Clinical decision support has the potential to assist in improving patient safety and making prognostic and diagnostic conjectures in interventional cardiology procedures. Robot-assisted percutaneous coronary intervention, along with functional and quantitative assessment of coronary artery ischemia and plaque burden on intravascular ultrasound (IVUS), are the major applications of AI. Machine learning algorithms are used in these applications, and they have the potential to bring a paradigm shift in intervention. Recently, an efficient branch of machine learning has emerged as a deep learning algorithm for numerous cardiovascular applications. However, the impact deep learning on the future of cardiology practice is not clear. Predictive models based on deep learning have several limitations including low generalizability and decision processing in cardiac anatomy.

摘要

在 20 年的技术发展和重塑的指导下,医疗保健数据的动态质量与计算能力的进步相结合,使得人工智能(AI)取得了快速发展。在介入心脏病学中,人工智能在从心电图、超声心动图、计算机断层血管造影、磁共振成像和电子患者数据中提供数据解释和自动化分析方面显示出了潜力。临床决策支持有可能有助于提高患者安全性,并对介入心脏病学程序进行预后和诊断推测。机器人辅助经皮冠状动脉介入治疗,以及冠状动脉缺血和血管内超声(IVUS)斑块负担的功能和定量评估,是人工智能的主要应用。这些应用中使用了机器学习算法,它们有可能带来干预的范式转变。最近,机器学习的一个高效分支作为一种深度学习算法,已经应用于许多心血管应用。然而,深度学习对心脏病学实践未来的影响尚不清楚。基于深度学习的预测模型存在一些局限性,包括心脏解剖结构的通用性和决策处理能力低。

相似文献

[1]
Role of Artificial Intelligence and Machine Learning in Interventional Cardiology.

Curr Probl Cardiol. 2023-7

[2]
Implementing Machine Learning in Interventional Cardiology: The Benefits Are Worth the Trouble.

Front Cardiovasc Med. 2021-12-8

[3]
Impact of Artificial Intelligence on Interventional Cardiology: From Decision-Making Aid to Advanced Interventional Procedure Assistance.

JACC Cardiovasc Interv. 2019-7-22

[4]
Application of Artificial Intelligence in Acute Coronary Syndrome: A Brief Literature Review.

Adv Ther. 2021-10

[5]
Applications of Artificial Intelligence in Cardiology. The Future is Already Here.

Rev Esp Cardiol (Engl Ed). 2019-12

[6]
Advancements in artificial intelligence-driven techniques for interventional cardiology.

Cardiol J. 2024

[7]
The Role of Artificial Intelligence in Echocardiography: A Clinical Update.

Curr Cardiol Rep. 2023-12

[8]
Future Horizons: The Potential Role of Artificial Intelligence in Cardiology.

J Pers Med. 2024-6-19

[9]
The Emergence of Artificial Intelligence in Cardiology: Current and Future Applications.

Curr Cardiol Rev. 2022

[10]
Successfully implemented artificial intelligence and machine learning applications in cardiology: State-of-the-art review.

Trends Cardiovasc Med. 2023-7

引用本文的文献

[1]
What is the role of artificial intelligence in general surgery?

Ewha Med J. 2024-4

[2]
Revolutionizing Cardiology: The Role of Artificial Intelligence in Echocardiography.

J Clin Med. 2025-1-19

[3]
Role of Artificial Intelligence-assisted Decision Support Tool for Common Rhythm Disturbances: A ChatGPT Proof-of-concept Study.

J Community Hosp Intern Med Perspect. 2024-11-2

[4]
Contemporary Functional Coronary Angiography: An Update.

Future Cardiol. 2024

[5]
Multimodal ECG heartbeat classification method based on a convolutional neural network embedded with FCA.

Sci Rep. 2024-4-16

[6]
Advancements in artificial intelligence-driven techniques for interventional cardiology.

Cardiol J. 2024

[7]
Predicting stroke and mortality in mitral stenosis with atrial flutter: A machine learning approach.

Ann Noninvasive Electrocardiol. 2023-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索