Suppr超能文献

基于机器学习的聚类分析,以确定 DNA 碎片指数和常规精液参数对体外受精结局的联合影响。

Machine learning-based clustering to identify the combined effect of the DNA fragmentation index and conventional semen parameters on in vitro fertilization outcomes.

机构信息

Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.

出版信息

Reprod Biol Endocrinol. 2023 Mar 15;21(1):26. doi: 10.1186/s12958-023-01080-y.

Abstract

BACKGROUND

Previous studies have demonstrated an association between male sperm quality and assisted reproduction outcomes, focusing on the effects of individual parameters and reaching controversial conclusions. The WHO 6th edition manual highlights a new semen assay, the sperm DNA fragmentation index, for use after routine semen examination. However, the combined effect of the sperm DNA fragmentation index (DFI) and routine semen parameters remains largely unknown.

METHODS

We assessed the combined effect of the sperm DFI and conventional semen parameters on single fresh conventional IVF outcomes for infertile couples from January 1, 2017, to December 31, 2020. IVF outcomes were obtained from the cohort database follow-up records of the Clinical Reproductive Medicine Management System of the Third Affiliated Hospital of Guangzhou Medical University. An unsupervised K-means clustering method was applied to classify participants into several coexposure pattern groups. A multivariate logistic regression model was used for statistical analysis.

RESULTS

A total of 549 live births among 1258 couples occurred during the follow-up period. A linear exposure-response relationship was observed among the sperm DFI, sperm motility, and IVF outcomes. In multivariable adjustment, increased sperm DFI values and decreased sperm motility and semen concentration levels were associated with reduced odds of favourable IVF outcomes. Four coexposure patterns were generated based on the sperm DFI and the studied semen parameters, as follows: Cluster 1 (low sperm DFI values and high sperm motility and semen concentration levels), Cluster 2 (low sperm DFI values and moderate sperm motility and semen concentration levels), Cluster 3 (low sperm DFI values and low sperm motility and semen concentration levels) and Cluster 4 (high sperm DFI values and low sperm motility and semen concentration levels). Compared with those in Cluster 1, participants in Cluster 3 and Cluster 4 had lower odds of a live birth outcome, with odds ratios (95% confidence intervals [CIs]) of 0.733 (0.537, 0.998) and 0.620 (0.394, 0.967), respectively.

CONCLUSIONS

When combined with low sperm DFI values, there was no significant difference between high or moderate sperm concentration and motility levels, and both were associated with favourable IVF outcomes. Low sperm parameter levels, even when DFI values remain low, may still lead to poor IVF outcomes. Participants with high sperm DFI values and low sperm motility and semen concentration levels had the worst outcomes. Our findings offer a novel perspective for exploring the joint effects of sperm DFI and routine semen parameter values.

摘要

背景

先前的研究表明,男性精子质量与辅助生殖结局之间存在关联,这些研究主要关注个体参数的影响,但得出的结论存在争议。世界卫生组织第六版手册强调了一种新的精液分析方法,即精子 DNA 碎片指数,用于常规精液检查后。然而,精子 DNA 碎片指数(DFI)与常规精液参数的联合效应在很大程度上仍不清楚。

方法

我们评估了精子 DFI 和常规精液参数对 2017 年 1 月 1 日至 2020 年 12 月 31 日期间不孕夫妇单次新鲜常规体外受精结局的联合影响。体外受精结局来自广州医科大学附属第三医院临床生殖医学管理系统的队列数据库随访记录。应用无监督 K-均值聚类方法将参与者分为几个共同暴露模式组。采用多变量逻辑回归模型进行统计分析。

结果

在随访期间,1258 对夫妇中有 549 例活产。精子 DFI、精子活力和 IVF 结局之间存在线性暴露反应关系。在多变量调整中,精子 DFI 值增加、精子活力和精液浓度降低与 IVF 结局不良的几率降低有关。根据精子 DFI 和研究的精液参数,共生成了 4 种共同暴露模式,如下所示:簇 1(精子 DFI 值低,精子活力和精液浓度水平高)、簇 2(精子 DFI 值低,精子活力和精液浓度水平中等)、簇 3(精子 DFI 值低,精子活力和精液浓度水平低)和簇 4(精子 DFI 值高,精子活力和精液浓度水平低)。与簇 1 相比,簇 3 和簇 4 中的参与者活产结局的几率较低,比值比(95%置信区间[CI])分别为 0.733(0.537,0.998)和 0.620(0.394,0.967)。

结论

当与低精子 DFI 值结合时,高或中等精子浓度和活力水平之间没有显著差异,两者都与良好的 IVF 结局相关。即使 DFI 值保持较低水平,较低的精子参数水平也可能导致较差的 IVF 结局。精子 DFI 值高、精子活力和精液浓度低的参与者结局最差。我们的研究结果为探索精子 DFI 和常规精液参数值的联合效应提供了新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f194/10015711/4152bda779ad/12958_2023_1080_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验