Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.
Division of Biology and Biomedical Sciences (DBBS), Washington University School of Medicine, St. Louis, MO, 63110, USA.
Mol Neurodegener. 2023 Mar 16;18(1):17. doi: 10.1186/s13024-023-00610-x.
Alzheimer Disease (AD) and cerebral amyloid angiopathy (CAA) are both characterized by amyloid-β (Aβ) accumulation in the brain, although Aβ deposits mostly in the brain parenchyma in AD and in the cerebrovasculature in CAA. The presence of CAA can exacerbate clinical outcomes of AD patients by promoting spontaneous intracerebral hemorrhage and ischemia leading to CAA-associated cognitive decline. Genetically, AD and CAA share the ε4 allele of the apolipoprotein E (APOE) gene as the strongest genetic risk factor. Although tremendous efforts have focused on uncovering the role of APOE4 on parenchymal plaque pathogenesis in AD, mechanistic studies investigating the role of APOE4 on CAA are still lacking. Here, we addressed whether abolishing APOE4 generated by astrocytes, the major producers of APOE, is sufficient to ameliorate CAA and CAA-associated vessel damage.
We generated transgenic mice that deposited both CAA and plaques in which APOE4 expression can be selectively suppressed in astrocytes. At 2-months-of-age, a timepoint preceding CAA and plaque formation, APOE4 was removed from astrocytes of 5XFAD APOE4 knock-in mice. Mice were assessed at 10-months-of-age for Aβ plaque and CAA pathology, gliosis, and vascular integrity.
Reducing the levels of APOE4 in astrocytes shifted the deposition of fibrillar Aβ from the brain parenchyma to the cerebrovasculature. However, despite increased CAA, astrocytic APOE4 removal reduced overall Aβ-mediated gliosis and also led to increased cerebrovascular integrity and function in vessels containing CAA.
In a mouse model of CAA, the reduction of APOE4 derived specifically from astrocytes, despite increased fibrillar Aβ deposition in the vasculature, is sufficient to reduce Aβ-mediated gliosis and cerebrovascular dysfunction.
阿尔茨海默病(AD)和脑淀粉样血管病(CAA)的特征均为脑内淀粉样-β(Aβ)沉积,尽管 AD 中的 Aβ 沉积主要位于脑实质,而 CAA 中的 Aβ 沉积位于脑血管。CAA 的存在可通过促进自发性脑出血和缺血导致与 CAA 相关的认知能力下降,从而加重 AD 患者的临床预后。从遗传学角度来看,AD 和 CAA 均具有载脂蛋白 E(APOE)基因的 ε4 等位基因,这是最强的遗传危险因素。尽管人们已投入大量精力来揭示 APOE4 在 AD 中对实质斑块发病机制的作用,但针对 APOE4 在 CAA 中作用的机制研究仍相对较少。在这里,我们探讨了是否通过星形胶质细胞(APOE 的主要产生细胞)中 APOE4 的缺失足以改善 CAA 和与 CAA 相关的血管损伤。
我们生成了能够同时沉积 CAA 和斑块的转基因小鼠,其中星形胶质细胞中的 APOE4 表达可被选择性抑制。在 2 月龄(早于 CAA 和斑块形成的时间点)时,从 5XFAD APOE4 基因敲入小鼠的星形胶质细胞中去除 APOE4。在 10 月龄时评估小鼠的 Aβ 斑块和 CAA 病理学、神经胶质增生和血管完整性。
星形胶质细胞中 APOE4 水平的降低将纤维状 Aβ 的沉积从脑实质转移到脑血管。然而,尽管 CAA 增加,但星形胶质细胞 APOE4 的缺失减少了总体 Aβ 介导的神经胶质增生,并导致富含 CAA 的血管中血管完整性和功能增加。
在 CAA 的小鼠模型中,尽管血管中纤维状 Aβ 的沉积增加,但特异性从星形胶质细胞中减少 APOE4 足以减少 Aβ 介导的神经胶质增生和脑血管功能障碍。