Suppr超能文献

深度学习用于绘制非截肢者行走基准数据集以控制开源仿生腿。

Deep-Learning to Map a Benchmark Dataset of Non-amputee Ambulation for Controlling an Open Source Bionic Leg.

作者信息

Kim Minjae, Hargrove Levi J

机构信息

Department of Physical Medicine & Rehabilitation, Northwestern University, Chicago, IL, 60611 USA.

Regenstein Center for Bionic Medicine, Shirley Ryan AbilityLab, Chicago, IL, 60611 USA.

出版信息

IEEE Robot Autom Lett. 2022 Oct;7(4):10597-10604. doi: 10.1109/lra.2022.3194323. Epub 2022 Jul 27.

Abstract

Powered lower-limb prosthetic devices may be becoming a promising option for amputation patients. Although various methods have been proposed to produce gait trajectories similar to those of non-disabled individuals, implementing these control methods is still challenging. It remains unclear whether these methods provide appropriate, safe, and intuitive locomotion as intended. This paper proposes the direct mapping of the voluntary movement of a residual limb (i.e., thigh) to the desired impedance parameters for amputated limbs (i.e., knee and ankle). The proposed model was learned from the gait trajectories of intact limb individuals from a publicly available biomechanics dataset, and was applied to control the prosthetic leg without post-tuning the network. Thus, the proposed method does not require training time with individuals with amputation nor configuration time for its use, and it provides a closely resembling gait trajectory of the intact limb. For preliminary testing, three able-bodied subjects participated in bypass tests. The proposed model accomplished intuitive and reliable level-ground walking at three different step lengths: self-selected, long-, and short-step lengths. The results indicate that intact benchmark data with different sensor configurations can be directly used to train the model to control prosthetic legs.

摘要

电动下肢假肢装置可能正在成为截肢患者的一个有前景的选择。尽管已经提出了各种方法来产生与非残疾个体相似的步态轨迹,但实施这些控制方法仍然具有挑战性。这些方法是否能按预期提供合适、安全且直观的运动仍不明确。本文提出将残肢(即大腿)的自主运动直接映射到截肢肢体(即膝盖和脚踝)的期望阻抗参数上。所提出的模型是从公开可用的生物力学数据集中完整肢体个体的步态轨迹中学习得到的,并应用于控制假肢腿,而无需对网络进行后期调整。因此,所提出的方法既不需要与截肢个体进行训练时间,也不需要使用时的配置时间,并且它提供了与完整肢体非常相似的步态轨迹。为了进行初步测试,三名健全受试者参与了旁路测试。所提出的模型在三种不同步长下实现了直观且可靠的平地行走:自选步长、长步长和短步长。结果表明,具有不同传感器配置的完整基准数据可直接用于训练模型以控制假肢腿。

相似文献

本文引用的文献

6
Global prevalence of traumatic non-fatal limb amputation.全球创伤性非致命性肢体截肢的流行率。
Prosthet Orthot Int. 2021 Apr 1;45(2):105-114. doi: 10.1177/0309364620972258.
7
Design and clinical implementation of an open-source bionic leg.开源仿生腿的设计与临床实现。
Nat Biomed Eng. 2020 Oct;4(10):941-953. doi: 10.1038/s41551-020-00619-3. Epub 2020 Oct 5.
10
Model-Based Estimation of Ankle Joint Stiffness.基于模型的踝关节刚度估计。
Sensors (Basel). 2017 Mar 29;17(4):713. doi: 10.3390/s17040713.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验