Suppr超能文献

人工智能赋能骨髓增生异常综合征的多参数流式细胞术诊断。

Artificial intelligence to empower diagnosis of myelodysplastic syndromes by multiparametric flow cytometry.

机构信息

Service d'Hématologie Biologique, CHU Amiens-Picardie, Amiens.

Service d'Hématologie Clinique et de Thérapie Cellulaire, CHU Amiens-Picardie, Amiens, France; HEMATIM, EA 4666, Université Picardie Jules Verne, Amiens.

出版信息

Haematologica. 2023 Sep 1;108(9):2435-2443. doi: 10.3324/haematol.2022.282370.

Abstract

The diagnosis of myelodysplastic syndromes (MDS) might be challenging and relies on the convergence of cytological, cytogenetic, and molecular factors. Multiparametric flow cytometry (MFC) helps diagnose MDS, especially when other features do not contribute to the decision-making process, but its usefulness remains underestimated, mostly due to a lack of standardization of cytometers. We present here an innovative model integrating artificial intelligence (AI) with MFC to improve the diagnosis and the classification of MDS. We develop a machine learning model through an elasticnet algorithm directed on a cohort of 191 patients, only based on flow cytometry parameters selected by the Boruta algorithm, to build a simple but reliable prediction score with five parameters. Our AI-assisted MDS prediction score greatly improves the sensitivity of the Ogata score while keeping an excellent specificity validated on an external cohort of 89 patients with an Area Under the Curve of 0.935. This model allows the diagnosis of both high- and low-risk MDS with 91.8% sensitivity and 92.5% specificity. Interestingly, it highlights a progressive evolution of the score from clonal hematopoiesis of indeterminate potential (CHIP) to highrisk MDS, suggesting a linear evolution between these different stages. By significantly decreasing the overall misclassification of 52% for patients with MDS and of 31.3% for those without MDS (P=0.02), our AI-assisted prediction score outperforms the Ogata score and positions itself as a reliable tool to help diagnose MDS.

摘要

骨髓增生异常综合征(MDS)的诊断可能具有挑战性,依赖于细胞、细胞遗传学和分子因素的综合。多参数流式细胞术(MFC)有助于 MDS 的诊断,特别是在其他特征无助于决策过程时,但由于细胞仪缺乏标准化,其用途仍然被低估。我们在这里提出了一种将人工智能(AI)与 MFC 结合的创新模型,以改善 MDS 的诊断和分类。我们通过弹性网络算法在 191 名患者的队列中开发了一个机器学习模型,仅基于 Boruta 算法选择的流式细胞术参数,构建了一个简单但可靠的具有五个参数的预测评分。我们的 AI 辅助 MDS 预测评分极大地提高了 Ogata 评分的敏感性,同时在 89 名外部患者队列中保持了出色的特异性,曲线下面积为 0.935。该模型允许以 91.8%的敏感性和 92.5%的特异性诊断高低风险 MDS。有趣的是,它突出了评分从不确定潜能的克隆性造血(CHIP)到高危 MDS 的逐渐演变,表明这些不同阶段之间存在线性演变。通过将 MDS 患者的总体误分类率从 52%显著降低到 31.3%(P=0.02),我们的 AI 辅助预测评分优于 Ogata 评分,并成为帮助诊断 MDS 的可靠工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f7d3/10483367/4297c93b1ff4/1082435.fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验