Suppr超能文献

一种用于骨髓增生异常综合征中颗粒减少型中性粒细胞自动识别的新型卷积神经网络预测模型。

A new convolutional neural network predictive model for the automatic recognition of hypogranulated neutrophils in myelodysplastic syndromes.

机构信息

Haematology and Cytology Unit, Core Laboratory, Biochemical and Molecular Genetics Department, CDB. Hospital Clínic of Barcelona-IDIBAPS, Barcelona, Spain; Department of Mathematics, Technical University of Catalonia, Barcelona East Engineering School, Barcelona, Spain.

Haematology and Cytology Unit, Core Laboratory, Biochemical and Molecular Genetics Department, CDB. Hospital Clínic of Barcelona-IDIBAPS, Barcelona, Spain.

出版信息

Comput Biol Med. 2021 Jul;134:104479. doi: 10.1016/j.compbiomed.2021.104479. Epub 2021 May 11.

Abstract

BACKGROUND

Dysplastic neutrophils commonly show at least 2/3 reduction of the content of cytoplasmic granules by morphologic examination. Recognition of less granulated dysplastic neutrophils by human eyes is difficult and prone to inter-observer variability. To tackle this problem, we proposed a new deep learning model (DysplasiaNet) able to automatically recognize the presence of hypogranulated dysplastic neutrophils in peripheral blood.

METHODS

Eight models were generated by varying convolutional blocks, number of layer nodes and fully connected layers. Each model was trained for 20 epochs. The five most accurate models were selected for a second stage, being trained again from scratch for 100 epochs. After training, cut-off values were calculated for a granularity score that discerns between normal and dysplastic neutrophils. Furthermore, a threshold value was obtained to quantify the minimum proportion of dysplastic neutrophils in the smear to consider that the patient might have a myelodysplastic syndrome (MDS). The final selected model was the one with the highest accuracy (95.5%).

RESULTS

We performed a final proof of concept with new patients not involved in previous steps. We reported 95.5% sensitivity, 94.3% specificity, 94% precision, and a global accuracy of 94.85%.

CONCLUSIONS

The primary contribution of this work is a predictive model for the automatic recognition in an objective way of hypogranulated neutrophils in peripheral blood smears. We envision the utility of the model implemented as an evaluation tool for MDS diagnosis integrated in the clinical laboratory workflow.

摘要

背景

形态学检查常显示,发育不良的中性粒细胞的细胞质颗粒含量至少减少 2/3。肉眼识别颗粒较少的发育不良中性粒细胞较为困难,且容易出现观察者间的变异性。为了解决这个问题,我们提出了一种新的深度学习模型(DysplasiaNet),能够自动识别外周血中颗粒减少的发育不良中性粒细胞。

方法

通过改变卷积块、层节点数量和全连接层,生成了 8 个模型。每个模型都训练了 20 个周期。选择了 5 个最准确的模型进行第二阶段的训练,从零开始再次训练 100 个周期。训练后,计算了区分正常和发育不良中性粒细胞的颗粒评分的截断值。此外,还获得了一个阈值,用于量化涂片中发育不良中性粒细胞的最小比例,以确定患者是否可能患有骨髓增生异常综合征(MDS)。最终选择的模型是准确性最高的模型(95.5%)。

结果

我们对未参与前几个步骤的新患者进行了最终的概念验证。我们报告了 95.5%的敏感性、94.3%的特异性、94%的精度和 94.85%的总体准确性。

结论

这项工作的主要贡献是提出了一种预测模型,用于客观地识别外周血涂片上颗粒减少的中性粒细胞。我们设想该模型可作为 MDS 诊断的评估工具,集成到临床实验室工作流程中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验