Suppr超能文献

基于人工智能的快速、无标记光学生物分子分类在弥漫性神经胶质瘤中的应用。

102 AI-Based Molecular Classification of Diffuse Gliomas using Rapid, Label-Free Optical Imaging.

出版信息

Neurosurgery. 2023 Apr 1;69(Suppl 1):22-23. doi: 10.1227/neu.0000000000002375_102.

Abstract

INTRODUCTION

Molecular classification has transformed the management of brain tumors by enabling more accurate prognostication and personalized treatment. Access to timely molecular diagnostic testing for brain tumor patients is limited, complicating surgical and adjuvant treatment and obstructing clinical trial enrollment.

METHODS

By combining stimulated Raman histology (SRH), a rapid, label-free, non-consumptive, optical imaging method, and deep learning-based image classification, we are able to predict the molecular genetic features used by the World Health Organization (WHO) to define the adult-type diffuse glioma taxonomy, including IDH-1/2, 1p19q-codeletion, and ATRX loss. We developed a multimodal deep neural network training strategy that uses both SRH images and large-scale, public diffuse glioma genomic data (i.e. TCGA, CGGA, etc.) in order to achieve optimal molecular classification performance.

RESULTS

One institution was used for model training (University of Michigan) and four institutions (NYU, UCSF, Medical University of Vienna, and University Hospital Cologne) were included for patient enrollment in the prospective testing cohort. Using our system, called DeepGlioma, we achieved an average molecular genetic classification accuracy of 93.2% and identified the correct diffuse glioma molecular subgroup with 91.5% accuracy within 2 minutes in the operating room. DeepGlioma outperformed conventional IDH1-R132H immunohistochemistry (94.2% versus 91.4% accuracy) as a first-line molecular diagnostic screening method for diffuse gliomas and can detect canonical and non-canonical IDH mutations.

CONCLUSIONS

Our results demonstrate how artificial intelligence and optical histology can be used to provide a rapid and scalable alternative to wet lab methods for the molecular diagnosis of brain tumor patients during surgery.

摘要

简介

分子分类通过更准确的预后预测和个性化治疗改变了脑肿瘤的治疗方式。由于脑肿瘤患者无法及时进行分子诊断检测,这给手术和辅助治疗带来了复杂性,并阻碍了临床试验的入组。

方法

我们结合了受激拉曼组织学(SRH)——一种快速、无标记、非消耗性、光学成像方法,以及基于深度学习的图像分类,能够预测世界卫生组织(WHO)用于定义成人弥漫性神经胶质瘤分类的分子遗传特征,包括 IDH-1/2、1p19q 缺失和 ATRX 缺失。我们开发了一种多模态深度神经网络训练策略,该策略同时使用 SRH 图像和大规模的公共弥漫性神经胶质瘤基因组数据(即 TCGA、CGGA 等),以实现最佳的分子分类性能。

结果

一个机构(密歇根大学)用于模型训练,四个机构(纽约大学、旧金山加利福尼亚大学、维也纳医科大学和科隆大学医院)用于前瞻性测试队列的患者入组。我们使用名为 DeepGlioma 的系统,在手术室中平均实现了 93.2%的分子遗传分类准确率,并且以 91.5%的准确率正确识别弥漫性神经胶质瘤的分子亚群,整个过程耗时不到 2 分钟。DeepGlioma 作为弥漫性神经胶质瘤的一线分子诊断筛查方法,其性能优于传统的 IDH1-R132H 免疫组织化学(准确率分别为 94.2%和 91.4%),并且能够检测到经典和非经典的 IDH 突变。

结论

我们的结果表明,人工智能和光学组织学如何能够为脑肿瘤患者手术期间的分子诊断提供一种快速和可扩展的替代湿实验室方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验