Machine Learning in Neurosurgery Laboratory, Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
Nat Med. 2023 Apr;29(4):828-832. doi: 10.1038/s41591-023-02252-4. Epub 2023 Mar 23.
Molecular classification has transformed the management of brain tumors by enabling more accurate prognostication and personalized treatment. However, timely molecular diagnostic testing for patients with brain tumors is limited, complicating surgical and adjuvant treatment and obstructing clinical trial enrollment. In this study, we developed DeepGlioma, a rapid (<90 seconds), artificial-intelligence-based diagnostic screening system to streamline the molecular diagnosis of diffuse gliomas. DeepGlioma is trained using a multimodal dataset that includes stimulated Raman histology (SRH); a rapid, label-free, non-consumptive, optical imaging method; and large-scale, public genomic data. In a prospective, multicenter, international testing cohort of patients with diffuse glioma (n = 153) who underwent real-time SRH imaging, we demonstrate that DeepGlioma can predict the molecular alterations used by the World Health Organization to define the adult-type diffuse glioma taxonomy (IDH mutation, 1p19q co-deletion and ATRX mutation), achieving a mean molecular classification accuracy of 93.3 ± 1.6%. Our results represent how artificial intelligence and optical histology can be used to provide a rapid and scalable adjunct to wet lab methods for the molecular screening of patients with diffuse glioma.
分子分类通过实现更准确的预后预测和个性化治疗,改变了脑肿瘤的治疗方式。然而,脑肿瘤患者的及时分子诊断检测受到限制,这使得手术和辅助治疗变得复杂,并阻碍了临床试验的入组。在这项研究中,我们开发了一种快速(<90 秒)的人工智能诊断筛选系统 DeepGlioma,以简化弥漫性神经胶质瘤的分子诊断。DeepGlioma 使用多模态数据集进行训练,该数据集包括受激拉曼组织学(SRH);一种快速、无标记、非消耗性、光学成像方法;以及大规模的公共基因组数据。在一项前瞻性、多中心、国际弥漫性神经胶质瘤患者检测队列研究中(n=153),患者接受实时 SRH 成像,我们证明 DeepGlioma 可以预测世界卫生组织(WHO)用于定义成人弥漫性神经胶质瘤分类的分子改变(IDH 突变、1p19q 共缺失和 ATRX 突变),平均分子分类准确率为 93.3±1.6%。我们的研究结果代表了人工智能和光学组织学如何被用于为弥漫性神经胶质瘤患者的分子筛选提供快速和可扩展的辅助湿实验室方法。