Suppr超能文献

基于人工智能的弥漫性神经胶质瘤快速无标记光成像分子分类。

Artificial-intelligence-based molecular classification of diffuse gliomas using rapid, label-free optical imaging.

机构信息

Machine Learning in Neurosurgery Laboratory, Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.

Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.

出版信息

Nat Med. 2023 Apr;29(4):828-832. doi: 10.1038/s41591-023-02252-4. Epub 2023 Mar 23.

Abstract

Molecular classification has transformed the management of brain tumors by enabling more accurate prognostication and personalized treatment. However, timely molecular diagnostic testing for patients with brain tumors is limited, complicating surgical and adjuvant treatment and obstructing clinical trial enrollment. In this study, we developed DeepGlioma, a rapid (<90 seconds), artificial-intelligence-based diagnostic screening system to streamline the molecular diagnosis of diffuse gliomas. DeepGlioma is trained using a multimodal dataset that includes stimulated Raman histology (SRH); a rapid, label-free, non-consumptive, optical imaging method; and large-scale, public genomic data. In a prospective, multicenter, international testing cohort of patients with diffuse glioma (n = 153) who underwent real-time SRH imaging, we demonstrate that DeepGlioma can predict the molecular alterations used by the World Health Organization to define the adult-type diffuse glioma taxonomy (IDH mutation, 1p19q co-deletion and ATRX mutation), achieving a mean molecular classification accuracy of 93.3 ± 1.6%. Our results represent how artificial intelligence and optical histology can be used to provide a rapid and scalable adjunct to wet lab methods for the molecular screening of patients with diffuse glioma.

摘要

分子分类通过实现更准确的预后预测和个性化治疗,改变了脑肿瘤的治疗方式。然而,脑肿瘤患者的及时分子诊断检测受到限制,这使得手术和辅助治疗变得复杂,并阻碍了临床试验的入组。在这项研究中,我们开发了一种快速(<90 秒)的人工智能诊断筛选系统 DeepGlioma,以简化弥漫性神经胶质瘤的分子诊断。DeepGlioma 使用多模态数据集进行训练,该数据集包括受激拉曼组织学(SRH);一种快速、无标记、非消耗性、光学成像方法;以及大规模的公共基因组数据。在一项前瞻性、多中心、国际弥漫性神经胶质瘤患者检测队列研究中(n=153),患者接受实时 SRH 成像,我们证明 DeepGlioma 可以预测世界卫生组织(WHO)用于定义成人弥漫性神经胶质瘤分类的分子改变(IDH 突变、1p19q 共缺失和 ATRX 突变),平均分子分类准确率为 93.3±1.6%。我们的研究结果代表了人工智能和光学组织学如何被用于为弥漫性神经胶质瘤患者的分子筛选提供快速和可扩展的辅助湿实验室方法。

相似文献

1
Artificial-intelligence-based molecular classification of diffuse gliomas using rapid, label-free optical imaging.
Nat Med. 2023 Apr;29(4):828-832. doi: 10.1038/s41591-023-02252-4. Epub 2023 Mar 23.
2
102 AI-Based Molecular Classification of Diffuse Gliomas using Rapid, Label-Free Optical Imaging.
Neurosurgery. 2023 Apr 1;69(Suppl 1):22-23. doi: 10.1227/neu.0000000000002375_102.
4
Perfusion and diffusion MRI signatures in histologic and genetic subtypes of WHO grade II-III diffuse gliomas.
J Neurooncol. 2017 Aug;134(1):177-188. doi: 10.1007/s11060-017-2506-9. Epub 2017 May 25.
5
IDH mutation and 1p19q codeletion distinguish two radiological patterns of diffuse low-grade gliomas.
J Neurooncol. 2017 May;133(1):37-45. doi: 10.1007/s11060-017-2421-0. Epub 2017 Apr 22.
9
IDH mutation, 1p19q codeletion and ATRX loss in WHO grade II gliomas.
Oncotarget. 2015 Oct 6;6(30):30295-305. doi: 10.18632/oncotarget.4497.

引用本文的文献

1
Influence of preprocessing of stimulated Raman scattering images on the performance of deep neural networks for detecting cancer tissue.
Quant Imaging Med Surg. 2025 Sep 1;15(9):7711-7726. doi: 10.21037/qims-2024-2608. Epub 2025 Aug 12.
2
Value of artificial intelligence in neuro-oncology.
Lancet Digit Health. 2025 Aug 8:100876. doi: 10.1016/j.landig.2025.100876.
3
A three-classification machine learning model for non-invasive prediction of molecular subtypes in diffuse glioma: a two-center study.
Quant Imaging Med Surg. 2025 Jun 6;15(6):5752-5768. doi: 10.21037/qims-24-2461. Epub 2025 May 29.
4
Principle of Stimulated Raman Scattering Microscopy: Emerging at High Spatiotemporal Limits.
J Phys Chem C Nanomater Interfaces. 2025 Mar 27;129(12):5789-5797. doi: 10.1021/acs.jpcc.5c00655. Epub 2025 Mar 13.
5
Towards Optical Biopsy in Glioma Surgery.
Int J Mol Sci. 2025 May 9;26(10):4554. doi: 10.3390/ijms26104554.
6
Immune cell targeting-mediated cytomimetic drug delivery system for BBB-penetrating and precise therapy of in situ glioma.
Mater Today Bio. 2025 Mar 22;32:101694. doi: 10.1016/j.mtbio.2025.101694. eCollection 2025 Jun.
7
Cancer Informatics: Novel Methods and Applications of Artificial Intelligence in Cancer Care Delivery.
Yearb Med Inform. 2024 Aug;33(1):99-101. doi: 10.1055/s-0044-1800727. Epub 2025 Apr 8.
9
Intraoperative classification of CNS lymphoma and glioblastoma by AI-based analysis of Stimulated Raman Histology (SRH).
Brain Spine. 2025 Jan 26;5:104187. doi: 10.1016/j.bas.2025.104187. eCollection 2025.
10
When machines start examining tissue specimens on their own.
Neuro Oncol. 2025 Jun 21;27(5):1311-1312. doi: 10.1093/neuonc/noaf021.

本文引用的文献

1
Rapid Automated Analysis of Skull Base Tumor Specimens Using Intraoperative Optical Imaging and Artificial Intelligence.
Neurosurgery. 2022 Jun 1;90(6):758-767. doi: 10.1227/neu.0000000000001929. Epub 2022 Mar 30.
2
Molecular Biomarker Testing for the Diagnosis of Diffuse Gliomas.
Arch Pathol Lab Med. 2022 May 1;146(5):547-574. doi: 10.5858/arpa.2021-0295-CP.
3
The 2021 WHO Classification of Tumors of the Central Nervous System: a summary.
Neuro Oncol. 2021 Aug 2;23(8):1231-1251. doi: 10.1093/neuonc/noab106.
4
Chinese Glioma Genome Atlas (CGGA): A Comprehensive Resource with Functional Genomic Data from Chinese Glioma Patients.
Genomics Proteomics Bioinformatics. 2021 Feb;19(1):1-12. doi: 10.1016/j.gpb.2020.10.005. Epub 2021 Mar 2.
5
Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks.
Nat Med. 2020 Jan;26(1):52-58. doi: 10.1038/s41591-019-0715-9. Epub 2020 Jan 6.
6
Do no harm: a roadmap for responsible machine learning for health care.
Nat Med. 2019 Sep;25(9):1337-1340. doi: 10.1038/s41591-019-0548-6. Epub 2019 Aug 19.
7
Genomic Correlates of Disease Progression and Treatment Response in Prospectively Characterized Gliomas.
Clin Cancer Res. 2019 Sep 15;25(18):5537-5547. doi: 10.1158/1078-0432.CCR-19-0032. Epub 2019 Jul 1.
8
Trends in the US and Canadian Pathologist Workforces From 2007 to 2017.
JAMA Netw Open. 2019 May 3;2(5):e194337. doi: 10.1001/jamanetworkopen.2019.4337.
9
The International Cancer Genome Consortium Data Portal.
Nat Biotechnol. 2019 Apr;37(4):367-369. doi: 10.1038/s41587-019-0055-9.
10
Gene2vec: distributed representation of genes based on co-expression.
BMC Genomics. 2019 Feb 4;20(Suppl 1):82. doi: 10.1186/s12864-018-5370-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验