Suppr超能文献

疫苗短缺时用于确定新冠疫苗接种优先顺序的多标准决策分析

Multi-Criteria Decision Analysis to Prioritize People for COVID-19 Vaccination When Vaccines Are in Short Supply.

作者信息

Chaker Masmoudi Hend, Rhili Amal, Zamali Imen, Ben Hmid Ahlem, Ben Ahmed Melika, Khrouf Myriam Razgallah

机构信息

Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia.

Department of Histology and Cytogenetics, Institute Pasteur of Tunis, Tunis, Tunisia.

出版信息

Front Health Serv. 2022 Apr 26;2:760626. doi: 10.3389/frhs.2022.760626. eCollection 2022.

Abstract

COVID-19 pandemic underscored the need for a rapid tool supporting decision-makers in prioritizing patients in the immediate and overwhelming context of pandemics, where shortages in different healthcare resources are faced. We have proposed Multi-Criteria Decision Analysis (MCDA) to create a system of criteria and weights to prioritize uses of COVID-19 vaccines in groups of people at significantly higher risk of severe COVID-19 disease or death, when vaccines are in short supply, for use in Tunisia. The prioritization criteria and the levels within each criterion were identified based on available COVID-19 evidence with a focus on the criteria selected by Tunisian scientific committees. To determine the weights for the criteria and levels, reflecting their relative importance, a panel of frontline physicians treating COVID-19 were invited to participate in an online survey using 1,000 minds MCDA software (www.1000minds.com) which implements the PAPRIKA (Potentially All Pairwise RanKings of all possible Alternatives) method. Ten criteria and twenty-three levels have been selected for prioritizing the uses of COVID-19 vaccines in groups of people at significantly higher risk of severe disease or death. Among the invited physicians, sixty have completed the survey. The obtained scores were, in decreasing order of importance (mean weights in parentheses, summing to 100%). Obesity (16.2%), Age (12.7%), Chronic pulmonary diseases (10.8%), Chronic cardiovascular conditions (10.3%), Bone marrow or organ transplantation (10.1%), Immunodeficiency or Immunosuppression (9.6%), Diabetes (9%), Renal failure (8.4%), evolutive cancer (6.9%), and high blood pressure (6%). MCDA-based prioritization scoring system comprising explicit criteria and weights provides an adaptable and multicriteria approach that can assist policy-makers to prioritize uses of COVID-19 vaccines.

摘要

新冠疫情凸显了在大流行的紧急且严峻情况下,需要一种快速工具来帮助决策者对患者进行优先排序,因为此时面临着不同医疗资源短缺的问题。我们提出了多标准决策分析(MCDA),以创建一个标准和权重系统,在突尼斯疫苗短缺时,对新冠病毒疾病或死亡风险显著更高的人群中新冠疫苗的使用进行优先排序。优先排序标准和每个标准内的级别是根据现有的新冠证据确定的,重点是突尼斯科学委员会选择的标准。为了确定反映标准和级别相对重要性的权重,邀请了一组治疗新冠患者的一线医生使用1000minds MCDA软件(www.1000minds.com)参与在线调查,该软件采用了PAPRIKA(所有可能替代方案的潜在所有成对排序)方法。已选择了十个标准和二十三个级别,以便在患重病或死亡风险显著更高的人群中对新冠疫苗的使用进行优先排序。在受邀医生中,有六十人完成了调查。获得的分数按重要性降序排列(括号内为平均权重,总和为100%)。肥胖(16.2%)、年龄(12.7%)、慢性肺部疾病(10.8%)、慢性心血管疾病(10.3%)、骨髓或器官移植(10.1%)、免疫缺陷或免疫抑制(9.6%)、糖尿病(9%)、肾衰竭(8.4%)、进展期癌症(6.9%)和高血压(6%)。基于MCDA的优先排序评分系统包括明确的标准和权重,提供了一种可适应的多标准方法,可协助政策制定者对新冠疫苗的使用进行优先排序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0fa/10012629/a5553916779a/frhs-02-760626-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验