Suppr超能文献

生理学中因果网络的重建

The Reconstruction of Causal Networks in Physiology.

作者信息

Günther Moritz, Kantelhardt Jan W, Bartsch Ronny P

机构信息

Max Planck Institute for Meteorology, Hamburg, Germany.

Institute of Physics, Martin-Luther-University Halle-Wittenberg, Halle, Germany.

出版信息

Front Netw Physiol. 2022 May 3;2:893743. doi: 10.3389/fnetp.2022.893743. eCollection 2022.

Abstract

We systematically compare strengths and weaknesses of two methods that can be used to quantify causal links between time series: Granger-causality and Bivariate Phase Rectified Signal Averaging (BPRSA). While a statistical test method for Granger-causality has already been established, we show that BPRSA causality can also be probed with existing statistical tests. Our results indicate that more data or stronger interactions are required for the BPRSA method than for the Granger-causality method to detect an existing link. Furthermore, the Granger-causality method can distinguish direct causal links from indirect links as well as links that arise from a common source, while BPRSA cannot. However, in contrast to Granger-causality, BPRSA is suited for the analysis of non-stationary data. We demonstrate the practicability of the Granger-causality method by applying it to polysomnography data from sleep laboratories. An algorithm is presented, which addresses the stationarity condition of Granger-causality by splitting non-stationary data into shorter segments until they pass a stationarity test. We reconstruct causal networks of heart rate, breathing rate, and EEG amplitude from young healthy subjects, elderly healthy subjects, and subjects with obstructive sleep apnea, a condition that leads to disruption of normal respiration during sleep. These networks exhibit differences not only between different sleep stages, but also between young and elderly healthy subjects on the one hand and subjects with sleep apnea on the other hand. Among these differences are 1) weaker interactions in all groups between heart rate, breathing rate and EEG amplitude during deep sleep, compared to light and REM sleep, 2) a stronger causal link from heart rate to breathing rate but disturbances in respiratory sinus arrhythmia (breathing to heart rate coupling) in subjects with sleep apnea, 3) a stronger causal link from EEG amplitude to breathing rate during REM sleep in subjects with sleep apnea. The Granger-causality method, although initially developed for econometric purposes, can provide a quantitative, testable measure for causality in physiological networks.

摘要

我们系统地比较了两种可用于量化时间序列之间因果关系的方法的优缺点

格兰杰因果关系法和双变量相位整流信号平均法(BPRSA)。虽然格兰杰因果关系的统计检验方法已经确立,但我们表明BPRSA因果关系也可以用现有的统计检验来探究。我们的结果表明,与格兰杰因果关系法相比,BPRSA方法检测现有联系需要更多的数据或更强的相互作用。此外,格兰杰因果关系法可以区分直接因果关系和间接因果关系以及源自共同来源的因果关系,而BPRSA则不能。然而,与格兰杰因果关系法不同,BPRSA适用于非平稳数据的分析。我们通过将格兰杰因果关系法应用于睡眠实验室的多导睡眠图数据来证明其实用性。提出了一种算法,该算法通过将非平稳数据分割成更短的段,直到它们通过平稳性检验来满足格兰杰因果关系的平稳性条件。我们重建了年轻健康受试者、老年健康受试者以及患有阻塞性睡眠呼吸暂停(一种导致睡眠期间正常呼吸中断的病症)的受试者的心率、呼吸率和脑电图幅度的因果网络。这些网络不仅在不同睡眠阶段之间存在差异,而且在年轻和老年健康受试者与睡眠呼吸暂停受试者之间也存在差异。这些差异包括:1)与浅睡眠和快速眼动睡眠相比,所有组在深度睡眠期间心率、呼吸率和脑电图幅度之间的相互作用较弱;2)心率与呼吸率之间的因果关系更强,但睡眠呼吸暂停受试者的呼吸性窦性心律失常(呼吸与心率耦合)存在紊乱;3)睡眠呼吸暂停受试者在快速眼动睡眠期间脑电图幅度与呼吸率之间的因果关系更强。格兰杰因果关系法虽然最初是为计量经济学目的而开发的,但可以为生理网络中的因果关系提供一种定量的、可检验的度量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/532e/10013035/ce0097d4b4eb/fnetp-02-893743-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验