Suppr超能文献

计算机辅助分类食管和分裂皮间接免疫荧光模式,用于检测自身免疫性皮肤病。

Computer-aided classification of indirect immunofluorescence patterns on esophagus and split skin for the detection of autoimmune dermatoses.

机构信息

Institute for Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany.

Department of Dermatology, Allergology and Venerology, University Hospital Schleswig-Holstein/University of Lübeck, Lübeck, Germany.

出版信息

Front Immunol. 2023 Feb 28;14:1111172. doi: 10.3389/fimmu.2023.1111172. eCollection 2023.

Abstract

Autoimmune bullous dermatoses (AIBD) are rare diseases that affect human skin and mucous membranes. Clinically, they are characterized by blister formation and/or erosions. Depending on the structures involved and the depth of blister formation, they are grouped into pemphigus diseases, pemphigoid diseases, and dermatitis herpetiformis. Classification of AIBD into their sub-entities is crucial to guide treatment decisions. One of the most sensitive screening methods for initial differentiation of AIBD is the indirect immunofluorescence (IIF) microscopy on tissue sections of monkey esophagus and primate salt-split skin, which are used to detect disease-specific autoantibodies. Interpretation of IIF patterns requires a detailed examination of the image by trained professionals automating this process is a challenging task with these highly complex tissue substrates, but offers the great advantage of an objective result. Here, we present computer-aided classification of esophagus and salt-split skin IIF images. We show how deep networks can be adapted to the specifics and challenges of IIF image analysis by incorporating segmentation of relevant regions into the prediction process, and demonstrate their high accuracy. Using this semi-automatic extension can reduce the workload of professionals when reading tissue sections in IIF testing. Furthermore, these results on highly complex tissue sections show that further integration of semi-automated workflows into the daily workflow of diagnostic laboratories is promising.

摘要

自身免疫性大疱性皮肤病 (AIBD) 是一种罕见的疾病,影响人体皮肤和黏膜。临床上,其特征是水疱形成和/或糜烂。根据受累的结构和水疱形成的深度,可将其分为天疱疮疾病、类天疱疮疾病和疱疹样皮炎。将 AIBD 分类为其亚实体对于指导治疗决策至关重要。用于初步区分 AIBD 的最敏感的筛选方法之一是在猴食管和灵长类动物盐裂皮的组织切片上进行间接免疫荧光 (IIF) 显微镜检查,用于检测疾病特异性自身抗体。IIF 模式的解释需要由经过培训的专业人员详细检查图像,使这个过程自动化是一项具有挑战性的任务,因为这些组织底物非常复杂,但具有客观结果的巨大优势。在这里,我们提出了食管和盐裂皮 IIF 图像的计算机辅助分类。我们展示了如何通过将相关区域的分割纳入预测过程,使深度网络适应 IIF 图像分析的细节和挑战,并展示其高精度。在 IIF 测试中使用这种半自动扩展可以减少专业人员阅读组织切片的工作量。此外,这些在高度复杂的组织切片上的结果表明,将半自动工作流程进一步集成到诊断实验室的日常工作流程中是有希望的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c76/10013071/915b6aaa8bc7/fimmu-14-1111172-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验