Department of Spinal Surgery, Yantai Yuhuangding Hospital, Yantai, China.
Department of Spinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, China.
Front Cell Infect Microbiol. 2023 Feb 28;13:1125946. doi: 10.3389/fcimb.2023.1125946. eCollection 2023.
Accurate spinal tuberculosis (TB) diagnosis is of utmost importance for adequately treating and managing the disease. Given the need for additional diagnostic tools, this study aimed to investigate the utility of host serum miRNA biomarkers for diagnosing and distinguishing spinal tuberculosis (STB) from pulmonary tuberculosis (PTB) and other spinal diseases of different origins (SDD). For a case-controlled investigation, a total of 423 subjects were voluntarily recruited, with 157 cases of STB, 83 cases of SDD, 30 cases of active PTB, and 153 cases of healthy controls (CONT) in 4 clinical centers. To discover the STB-specific miRNA biosignature, a high-throughput miRNA profiling study was performed in the pilot study with 12 cases of STB and 8 cases of CONT using the Exiqon miRNA PCR array platform. A bioinformatics study identified that the 3-plasma miRNA combination (hsa-miR-506-3p, hsa-miR-543, hsa-miR-195-5p) might serve as a candidate biomarker for STB. The subsequent training study developed the diagnostic model using multivariate logistic regression in training data sets, including CONT(n=100) and STB (n=100). Youden's J index determined the optimal classification threshold. Receiver Operating Characteristic (ROC) curve analysis showed that 3-plasma miRNA biomarker signatures have an area under the curve (AUC) = 0.87, sensitivity = 80.5%, and specificity = 80.0%. To explore the possible potential to distinguish spinal TB from PDB and other SDD, the diagnostic model with the same classification threshold was applied to the analysis of the independent validation data set, including CONT(n=45), STB(n=45), brucellosis spondylitis (BS, n=30), PTB (n=30), spinal tumor (ST, n=30) and pyogenic spondylitis (PS, n=23). The results showed diagnostic model based on three miRNA signatures could discriminate the STB from other SDD groups with sensitivity=80%, specificity=96%, Positive Predictive Value (PPV)=84%, Negative Predictive Value (NPV)=94%, the total accuracy rate of 92%. These results indicate that this 3-plasma miRNA biomarker signature could effectively discriminate the STB from other spinal destructive diseases and pulmonary tuberculosis. The present study shows that the diagnostic model based on 3-plasma miRNA biomarker signature (hsa-miR-506-3p, hsa-miR-543, hsa-miR-195-5p) may be used for medical guidance to discriminate the STB from other spinal destructive disease and pulmonary tuberculosis.
准确诊断脊柱结核(TB)对于充分治疗和管理疾病至关重要。鉴于需要额外的诊断工具,本研究旨在探讨宿主血清 miRNA 生物标志物在诊断和区分脊柱结核(STB)与肺结核(PTB)和其他不同来源的脊柱疾病(SDD)中的效用。
在一项病例对照研究中,共有 423 名受试者在 4 个临床中心自愿参加,其中 157 例为 STB,83 例为 SDD,30 例为活动性 PTB,153 例为健康对照(CONT)。为了发现 STB 特异性 miRNA 生物标志物,我们在试点研究中使用 Exiqon miRNA PCR 阵列平台对 12 例 STB 和 8 例 CONT 进行了高通量 miRNA 谱研究。生物信息学研究表明,3 种血浆 miRNA 组合(hsa-miR-506-3p、hsa-miR-543、hsa-miR-195-5p)可能作为 STB 的候选生物标志物。随后的训练研究在训练数据集(包括 CONT(n=100) 和 STB (n=100))中使用多元逻辑回归开发了诊断模型。Youden 的 J 指数确定了最佳分类阈值。接收者操作特征(ROC)曲线分析显示,3 种血浆 miRNA 生物标志物特征的曲线下面积(AUC)=0.87,灵敏度=80.5%,特异性=80.0%。为了探索区分脊柱 TB 与 PDB 和其他 SDD 的可能潜力,我们将具有相同分类阈值的诊断模型应用于独立验证数据集的分析,包括 CONT(n=45)、STB(n=45)、布鲁氏菌性脊柱炎(BS,n=30)、PTB(n=30)、脊柱肿瘤(ST,n=30)和化脓性脊柱炎(PS,n=23)。结果表明,基于 3 种 miRNA 特征的诊断模型可以以 80%的敏感性、96%的特异性、84%的阳性预测值(PPV)、94%的阴性预测值(NPV)和 92%的总准确率区分 STB 与其他 SDD 组。这些结果表明,这种 3 种血浆 miRNA 生物标志物特征可以有效区分 STB 与其他脊柱破坏性疾病和肺结核。本研究表明,基于 3 种血浆 miRNA 生物标志物特征(hsa-miR-506-3p、hsa-miR-543、hsa-miR-195-5p)的诊断模型可用于医学指导,以区分 STB 与其他脊柱破坏性疾病和肺结核。