Suppr超能文献

用于分子特异性生物成像的银纳米颗粒开发 高度可及的显微镜技术。

silver nanoparticle development for molecular-specific biological imaging highly accessible microscopies.

作者信息

Song Dae-Hyeon, Song Chang Woo, Chung Jinkyoung, Jang Eun-Hae, Kim Hyunwoo, Hur Yongsuk, Hur Eun-Mi, Kim Doory, Chang Jae-Byum

机构信息

Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology Daejeon Korea

Department of Chemistry, Hanyang University Seoul Korea

出版信息

Nanoscale Adv. 2022 Dec 21;5(6):1636-1650. doi: 10.1039/d2na00449f. eCollection 2023 Mar 14.

Abstract

In biological studies and diagnoses, brightfield (BF), fluorescence, and electron microscopy (EM) are used to image biomolecules inside cells. When compared, their relative advantages and disadvantages are obvious. BF microscopy is the most accessible of the three, but its resolution is limited to a few microns. EM provides a nanoscale resolution, but sample preparation is time-consuming. In this study, we present a new imaging technique, which we termed decoration microscopy (DecoM), and quantitative investigations to address the aforementioned issues in EM and BF microscopy. For molecular-specific EM imaging, DecoM labels proteins inside cells using antibodies bearing 1.4 nm gold nanoparticles (AuNPs) and grows silver layers on the AuNPs' surfaces. The cells are then dried without buffer exchange and imaged using scanning electron microscopy (SEM). Structures labeled with silver-grown AuNPs are clearly visible on SEM, even they are covered with lipid membranes. Using stochastic optical reconstruction microscopy, we show that the drying process causes negligible distortion of structures and that less structural deformation could be achieved through simple buffer exchange to hexamethyldisilazane. Using DecoM, we visualize the nanoscale alterations in microtubules by microtubule-severing proteins that cannot be observed with diffraction-limited fluorescence microscopy. We then combine DecoM with expansion microscopy to enable sub-micron resolution BF microscopy imaging. We first show that silver-grown AuNPs strongly absorb white light, and the structures labeled with them are clearly visible on BF microscopy. We then show that the application of AuNPs and silver development must follow expansion to visualize the labeled proteins clearly with sub-micron resolution.

摘要

在生物学研究和诊断中,明场(BF)、荧光和电子显微镜(EM)用于对细胞内的生物分子进行成像。相比较而言,它们各自的优缺点很明显。BF显微镜是这三种显微镜中最容易获得的,但它的分辨率限制在几微米。EM提供纳米级分辨率,但样品制备耗时。在本研究中,我们提出了一种新的成像技术,我们称之为装饰显微镜(DecoM),并进行了定量研究,以解决EM和BF显微镜中的上述问题。对于分子特异性EM成像,DecoM使用带有1.4纳米金纳米颗粒(AuNPs)的抗体标记细胞内的蛋白质,并在AuNPs表面生长银层。然后在不进行缓冲液交换的情况下干燥细胞,并使用扫描电子显微镜(SEM)成像。即使被脂质膜覆盖,用银生长的AuNPs标记的结构在SEM上也清晰可见。使用随机光学重建显微镜,我们表明干燥过程对结构造成的扭曲可以忽略不计,并且通过简单地将缓冲液交换为六甲基二硅氮烷可以实现更小的结构变形。使用DecoM,我们可视化了微管切割蛋白对微管的纳米级改变,而这是衍射极限荧光显微镜无法观察到的。然后我们将DecoM与扩展显微镜相结合,以实现亚微米分辨率的BF显微镜成像。我们首先表明,银生长的AuNPs强烈吸收白光,并且用它们标记的结构在BF显微镜上清晰可见。然后我们表明,AuNPs的应用和银显影必须在扩展之后进行,以便以亚微米分辨率清晰地可视化标记的蛋白质。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d09c/10012848/257de111cf7f/d2na00449f-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验