Suppr超能文献

消息传递神经网络提高代谢物真实性预测。

Message Passing Neural Networks Improve Prediction of Metabolite Authenticity.

机构信息

Department of Pathology and Immunology, Washington University School of Medicine, Campus Box 8118, 660 S. Euclid Ave., St. Louis, Missouri 63110, United States.

出版信息

J Chem Inf Model. 2023 Mar 27;63(6):1675-1694. doi: 10.1021/acs.jcim.2c01383. Epub 2023 Mar 16.

Abstract

Cytochrome P450 enzymes aid in the elimination of a preponderance of small molecule drugs, but can generate reactive metabolites that may adversely react with protein and DNA and prompt drug candidate attrition or market withdrawal. Previously developed models help understand how these enzymes modify molecule structure by predicting sites of metabolism or characterizing formation of metabolite-biomolecule adducts. However, the majority of reactive metabolites are formed by multiple metabolic steps, and understanding the progenitor molecule's network-level behavior necessitates an integrative approach that blends multiple site of metabolism and structure inference models. Our previously developed tool, XenoNet 1.0, generates metabolic networks, where nodes are molecules and weighted edges are metabolic transformations. We extend XenoNet with a bidirectional message passing neural network that integrates edge feature information and local network structure using edge-conditioned graph convolutions and jumping knowledge to predict the authenticity of inferred Phase I metabolite structures. Our model significantly outperformed prior work and algorithmic baselines on a data set of 311 networks and 6606 intermediates annotated using a chemically diverse set of 20 736 individual in vitro and in vivo reaction records accounting for 92.3% of all human Phase I metabolism in the Accelrys Metabolite Database. Cross-validated predictions resulted in area under the receiver operating characteristic curves of 88.5% and 87.6% for separating experimentally observed and unobserved metabolites at global and network levels, respectively. Further analysis verified robustness to networks of varying depth and breadth, accurate detection of metabolites, such as d,l-methamphetamine, that are experimentally observed or unobserved in different network contexts, extraction of important metabolic subnetworks, and identification of known bioactivation pathways, such as for nimesulide and terbinafine. By exploiting network structures, our approach accurately suggests unreported metabolites for experimental study and may rationalize modifications for avoiding deleterious pathways antecedent to reactive metabolite formation.

摘要

细胞色素 P450 酶有助于消除大量小分子药物,但会产生可能与蛋白质和 DNA 发生不良反应的反应性代谢物,并促使药物候选物淘汰或退出市场。以前开发的模型有助于通过预测代谢部位或表征代谢物-生物分子加合物的形成来理解这些酶如何修饰分子结构。然而,大多数反应性代谢物是由多个代谢步骤形成的,要了解前体分子的网络级行为,需要采用融合多种代谢部位和结构推断模型的综合方法。我们之前开发的工具 XenoNet 1.0 生成代谢网络,其中节点是分子,加权边是代谢转化。我们使用带条件边的图卷积和跳跃知识扩展了 XenoNet,将边特征信息和局部网络结构集成到双向消息传递神经网络中,以预测推断的 I 相代谢物结构的真实性。我们的模型在使用一组化学多样化的 20736 个个体体外和体内反应记录注释的 311 个网络和 6606 个中间体的数据集上的表现明显优于先前的工作和算法基线,该数据集涵盖了 Accelrys 代谢物数据库中 92.3%的所有人类 I 相代谢。交叉验证预测在全局和网络级别分别得到 88.5%和 87.6%的接收器操作特征曲线下面积,用于分离实验观察到和未观察到的代谢物。进一步的分析验证了该方法对不同深度和广度的网络的稳健性、对 d,l-苯丙胺等实验观察到或在不同网络环境中未观察到的代谢物的准确检测、重要代谢子网络的提取以及尼美舒利和特比萘芬等已知生物激活途径的识别。通过利用网络结构,我们的方法可以准确地为实验研究建议未报道的代谢物,并可以在形成反应性代谢物之前合理化避免有害途径的修饰。

相似文献

1
Message Passing Neural Networks Improve Prediction of Metabolite Authenticity.消息传递神经网络提高代谢物真实性预测。
J Chem Inf Model. 2023 Mar 27;63(6):1675-1694. doi: 10.1021/acs.jcim.2c01383. Epub 2023 Mar 16.
2
XenoNet: Inference and Likelihood of Intermediate Metabolite Formation.异种网络:中间代谢物形成的推断与可能性
J Chem Inf Model. 2020 Jul 27;60(7):3431-3449. doi: 10.1021/acs.jcim.0c00361. Epub 2020 Jun 29.
3
The Metabolic Rainbow: Deep Learning Phase I Metabolism in Five Colors.代谢彩虹:五种颜色的深度学习一期代谢。
J Chem Inf Model. 2020 Mar 23;60(3):1146-1164. doi: 10.1021/acs.jcim.9b00836. Epub 2020 Feb 24.
7
Metabolic Forest: Predicting the Diverse Structures of Drug Metabolites.代谢森林:预测药物代谢物的多样结构
J Chem Inf Model. 2020 Oct 26;60(10):4702-4716. doi: 10.1021/acs.jcim.0c00360. Epub 2020 Sep 16.
8
Modeling the Bioactivation and Subsequent Reactivity of Drugs.药物的生物活化及后续反应的建模。
Chem Res Toxicol. 2021 Feb 15;34(2):584-600. doi: 10.1021/acs.chemrestox.0c00417. Epub 2021 Jan 26.

本文引用的文献

1
Metabolic Forest: Predicting the Diverse Structures of Drug Metabolites.代谢森林:预测药物代谢物的多样结构
J Chem Inf Model. 2020 Oct 26;60(10):4702-4716. doi: 10.1021/acs.jcim.0c00360. Epub 2020 Sep 16.
2
XenoNet: Inference and Likelihood of Intermediate Metabolite Formation.异种网络:中间代谢物形成的推断与可能性
J Chem Inf Model. 2020 Jul 27;60(7):3431-3449. doi: 10.1021/acs.jcim.0c00361. Epub 2020 Jun 29.
3
The Metabolic Rainbow: Deep Learning Phase I Metabolism in Five Colors.代谢彩虹:五种颜色的深度学习一期代谢。
J Chem Inf Model. 2020 Mar 23;60(3):1146-1164. doi: 10.1021/acs.jcim.9b00836. Epub 2020 Feb 24.
8
Nimesulide-induced hepatotoxicity: A systematic review and meta-analysis.尼美舒利致肝毒性:系统评价和荟萃分析。
PLoS One. 2019 Jan 24;14(1):e0209264. doi: 10.1371/journal.pone.0209264. eCollection 2019.
10
The use of structural alerts to avoid the toxicity of pharmaceuticals.利用结构警示来避免药物毒性。
Toxicol Rep. 2018 Aug 31;5:943-953. doi: 10.1016/j.toxrep.2018.08.017. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验