State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology (Shanghai), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
Changping Laboratory, Beijing 102206, China.
J Phys Chem A. 2023 Mar 30;127(12):2864-2872. doi: 10.1021/acs.jpca.3c00145. Epub 2023 Mar 16.
Spatial transcriptomics can be used to capture cellular spatial organization and has facilitated new insights into different biological contexts, including developmental biology, cancer, and neuroscience. However, its wide application is still hindered by its technical challenges and immature data analysis methods. Allen Brain Atlas (ABA) provides a great source for spatial gene expression throughout the mouse brain at various developmental stages with in situ hybridization image data. To the best of our knowledge, the portal developed to access spatial expression data is not very useful to biologists. Here, we developed a toolkit to collect and preprocess expression data from the ABA and allow a friendlier query to visualize the spatial distribution of genes of interest, characterize the spatial heterogeneity of the brain, and register cells from single-cell transcriptomics data to fine anatomical brain regions via machine learning methods with high accuracy. AllenDigger will be very helpful to the community in precise spatial gene expression queries and add extra spatial information to further interpret the scRNA-seq data in a cost-effective manner.
空间转录组学可用于捕获细胞的空间组织,有助于深入了解不同的生物学背景,包括发育生物学、癌症和神经科学。然而,其广泛应用仍受到技术挑战和不成熟的数据分析方法的限制。Allen 大脑图谱 (ABA) 提供了一个很好的资源,可在各种发育阶段通过原位杂交图像数据获取整个小鼠大脑的空间基因表达信息。据我们所知,为获取空间表达数据而开发的门户对生物学家来说并不是很有用。在这里,我们开发了一个工具包,用于从 ABA 中收集和预处理表达数据,并允许更友好地查询以可视化感兴趣基因的空间分布,描述大脑的空间异质性,并通过机器学习方法将单细胞转录组学数据中的细胞准确地注册到精细的解剖脑区。AllenDigger 将非常有助于社区进行精确的空间基因表达查询,并以具有成本效益的方式添加额外的空间信息,以进一步解释 scRNA-seq 数据。