Department of Mechanical Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16499, Republic of Korea.
Nat Commun. 2023 Mar 17;14(1):1473. doi: 10.1038/s41467-023-37119-2.
Momentum transfer from the water surface is strongly related to the dynamical scale and morphology of jumping animals. Here, we investigate the scale-dependent momentum transfer of various jumping organisms and engineered systems at an air-water interface. A simplified analytical model for calculating the maximum momentum transfer identifies an intermediate dynamical scale region highly disadvantageous for jumping on water. The Weber number of the systems should be designed far from 1 to achieve high jumping performance on water. We design a relatively large water-jumping robot in the drag-dominant scale range, having a high Weber number, for maximum jumping height and distance. The jumping robot, around 10 times larger than water striders, has a take-off speed of 3.6 m/s facilitated by drag-based propulsion, which is the highest value reported thus far. The scale-dependent hydrodynamics of water jumpers provides a useful framework for understanding nature and robotic system interacting with the water surface.
从水面传递的动量与跳跃动物的动力尺度和形态密切相关。在这里,我们研究了各种在气-液界面跳跃的生物体和工程系统的尺度相关动量传递。一个用于计算最大动量传递的简化分析模型确定了一个中间动力尺度区域,对于在水面跳跃非常不利。系统的韦伯数应设计得远小于 1,以在水面上实现高跳跃性能。我们在阻力主导的尺度范围内设计了一个相对较大的水跃机器人,具有较高的韦伯数,以实现最大的跳跃高度和距离。跳跃机器人的起飞速度为 3.6 m/s,比水黾大 10 倍,这得益于基于阻力的推进,这是迄今为止报道的最高值。水跃动物的尺度相关水动力学为理解与水面相互作用的自然和机器人系统提供了一个有用的框架。