Laboratory of Behavioral Ecology and Evolution, School of Biological Sciences, Seoul National University, Seoul 08826, Korea.
Laboratoire d'Hydrodynamique de l'X (LadHyX), UMR CNRS 7646, École Polytechnique, 91128 Palaiseau Cedex, France.
Proc Natl Acad Sci U S A. 2023 Jul 25;120(30):e2219972120. doi: 10.1073/pnas.2219972120. Epub 2023 Jul 18.
Current theory for surface tension-dominant jumps on water, created for small- and medium-sized water strider species and used in bioinspired engineering, predicts that jumping individuals are able to match their downward leg movement speed to their size and morphology such that they maximize the takeoff speed and minimize the takeoff delay without breaking the water surface. Here, we use empirical observations and theoretical modeling to show that large species (heavier than ~80 mg) could theoretically perform the surface-dominated jumps according to the existing model, but they do not conform to its predictions, and switch to using surface-breaking jumps in order to achieve jumping performance sufficient for evading attacks from underwater predators. This illustrates how natural selection for avoiding predators may break the theoretical scaling relationship between prey size and its jumping performance within one physical mechanism, leading to an evolutionary shift to another mechanism that provides protection from attacking predators. Hence, the results are consistent with a general idea: Natural selection for the maintenance of adaptive function of a specific behavior performed within environmental physical constraints leads to size-specific shift to behaviors that use a new physical mechanism that secure the adaptive function.
目前,针对小型和中型水黾物种的表面张力主导跳跃的理论在仿生工程中得到了应用,该理论预测,跳跃个体能够根据自身的大小和形态调整向下腿部的运动速度,从而最大限度地提高起飞速度并最小化起飞延迟,而不会破坏水面。在这里,我们使用经验观察和理论建模来表明,大型物种(重量超过约 80 毫克)根据现有模型理论上可以进行表面主导的跳跃,但它们不符合模型的预测,而是转而使用打破水面的跳跃方式,以实现足以躲避水下捕食者攻击的跳跃性能。这说明了自然选择为了躲避捕食者,可能会打破猎物大小与其跳跃性能之间的理论比例关系,而这种比例关系是在单一物理机制内形成的,最终导致了向另一种提供保护的机制的进化转变,以防止被攻击。因此,研究结果与一个普遍观点一致:为了维持特定行为在环境物理限制内的适应性功能而进行的自然选择,会导致针对特定大小的行为发生转变,转而利用一种新的物理机制来确保适应性功能。