Suppr超能文献

适用于组织学纤维化染色通用分析的自适应聚类方法,作为一个开源工具。

Adapted clustering method for generic analysis of histological fibrosis staining as an open source tool.

机构信息

Department of Internal Medicine III, University Hospital Schleswig-Holstein, Kiel and German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Kiel, Germany.

Department of Internal Medicine III, University Hospital Heidelberg, Heidelberg, Germany.

出版信息

Sci Rep. 2023 Mar 16;13(1):4389. doi: 10.1038/s41598-023-30196-9.

Abstract

Pathological remodeling of the extracellular matrix is a hallmark of cardiovascular disease. Abnormal fibrosis causes cardiac dysfunction by reducing ejection fraction and impairing electrical conductance, leading to arrhythmias. Hence, accurate quantification of fibrosis deposition in histological sections is of extreme importance for preclinical and clinical studies. Current automatic tools do not perform well under variant conditions. Moreover, users do not have the option to evaluate data from staining methods of their choice according to their purpose. To overcome these challenges, we underline a novel machine learning-based tool (FibroSoft) and we show its feasibility in a model of cardiac hypertrophy and heart failure in mice. Our results demonstrate that FibroSoft can identify fibrosis in diseased myocardium and the obtained results are user-independent. In addition, the results acquired using our software strongly correlate to those obtained by Western blot analysis of collagen 1 expression. Additionally, we could show that this method can be used for Masson's Trichrome and Picosirius Red stained histological images. The evaluation of our method also indicates that it can be used for any particular histology segmentation and quantification. In conclusion, our approach provides a powerful example of the feasibility of machine learning strategies to enable automatic analysis of histological images.

摘要

细胞外基质的病理性重塑是心血管疾病的一个标志。异常纤维化通过降低射血分数和损害电导率导致心脏功能障碍,从而引发心律失常。因此,准确量化组织学切片中的纤维化沉积对于临床前和临床研究至关重要。目前的自动工具在不同条件下表现不佳。此外,用户没有根据自己的目的选择评估染色方法数据的选项。为了克服这些挑战,我们强调了一种新的基于机器学习的工具(FibroSoft),并在小鼠心肌肥厚和心力衰竭模型中展示了其可行性。我们的结果表明,FibroSoft 可以识别患病心肌中的纤维化,并且获得的结果与胶原 1 表达的 Western blot 分析结果无关。此外,我们还证明了该软件可用于 Masson 三色和 Picosirius Red 染色的组织学图像。对我们方法的评估还表明,它可用于任何特定的组织学分割和定量。总之,我们的方法为机器学习策略的可行性提供了一个有力的例子,可实现组织学图像的自动分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5d6/10020481/03c43d6238af/41598_2023_30196_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验