Institute of Biotechnology, HiLIFE, University of Helsinki, FIN-00014 Helsinki, Finland.
Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, FIN-00014 Helsinki, Finland.
Brain. 2023 Sep 1;146(9):3783-3799. doi: 10.1093/brain/awad087.
Amyotrophic lateral sclerosis is a progressive neurodegenerative disease that affects motor neurons in the spinal cord, brainstem and motor cortex, leading to paralysis and eventually to death within 3-5 years of symptom onset. To date, no cure or effective therapy is available. The role of chronic endoplasmic reticulum stress in the pathophysiology of amyotrophic lateral sclerosis, as well as a potential drug target, has received increasing attention. Here, we investigated the mode of action and therapeutic effect of the endoplasmic reticulum-resident protein cerebral dopamine neurotrophic factor in three preclinical models of amyotrophic lateral sclerosis, exhibiting different disease development and aetiology: (i) the conditional choline acetyltransferase-tTA/TRE-hTDP43-M337V rat model previously described; (ii) the widely used SOD1-G93A mouse model; and (iii) a novel slow-progressive TDP43-M337V mouse model. To specifically analyse the endoplasmic reticulum stress response in motor neurons, we used three main methods: (i) primary cultures of motor neurons derived from embryonic Day 13 embryos; (ii) immunohistochemical analyses of spinal cord sections with choline acetyltransferase as spinal motor neuron marker; and (iii) quantitative polymerase chain reaction analyses of lumbar motor neurons isolated via laser microdissection. We show that intracerebroventricular administration of cerebral dopamine neurotrophic factor significantly halts the progression of the disease and improves motor behaviour in TDP43-M337V and SOD1-G93A rodent models of amyotrophic lateral sclerosis. Cerebral dopamine neurotrophic factor rescues motor neurons in vitro and in vivo from endoplasmic reticulum stress-associated cell death and its beneficial effect is independent of genetic disease aetiology. Notably, cerebral dopamine neurotrophic factor regulates the unfolded protein response initiated by transducers IRE1α, PERK and ATF6, thereby enhancing motor neuron survival. Thus, cerebral dopamine neurotrophic factor holds great promise for the design of new rational treatments for amyotrophic lateral sclerosis.
肌萎缩侧索硬化症是一种进行性神经退行性疾病,影响脊髓、脑干和运动皮层的运动神经元,导致瘫痪,并在症状出现后 3-5 年内最终导致死亡。迄今为止,尚无治愈或有效的治疗方法。慢性内质网应激在肌萎缩侧索硬化症的病理生理学中的作用以及潜在的药物靶点,已引起越来越多的关注。在这里,我们在三种肌萎缩侧索硬化症的临床前模型中研究了内质网驻留蛋白脑源性神经营养因子的作用机制和治疗效果,这些模型表现出不同的疾病发展和病因:(i)先前描述的条件性胆碱乙酰转移酶-tTA/TRE-hTDP43-M337V 大鼠模型;(ii)广泛使用的 SOD1-G93A 小鼠模型;和(iii)一种新型的缓慢进展性 TDP43-M337V 小鼠模型。为了专门分析运动神经元中的内质网应激反应,我们使用了三种主要方法:(i)从胚胎第 13 天的胚胎中衍生的运动神经元原代培养物;(ii)用胆碱乙酰转移酶作为脊髓运动神经元标志物对脊髓切片进行免疫组织化学分析;和(iii)通过激光微切割分离的腰运动神经元的定量聚合酶链反应分析。我们表明,脑源性神经营养因子的脑内给药可显著阻止疾病的进展并改善 TDP43-M337V 和 SOD1-G93A 肌萎缩侧索硬化症啮齿动物模型的运动行为。脑源性神经营养因子可挽救体外和体内运动神经元免受内质网应激相关的细胞死亡,其有益作用与遗传疾病病因无关。值得注意的是,脑源性神经营养因子调节由转导器 IRE1α、PERK 和 ATF6 引发的未折叠蛋白反应,从而增强运动神经元的存活。因此,脑源性神经营养因子为设计新的合理肌萎缩侧索硬化症治疗方法提供了巨大的希望。