Fudan University, 200433, Shanghai, China.
Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, 310000, Hangzhou, China.
Nat Commun. 2023 Mar 16;14(1):1470. doi: 10.1038/s41467-023-37204-6.
The transmembrane voltage gradient is a general physico-chemical cue that regulates diverse biological function through voltage-gated ion channels. How voltage sensing mediates ion flows remains unknown at the molecular level. Here, we report six conformations of the human Eag2 (hEag2) ranging from closed, pre-open, open, and pore dilation but non-conducting states captured by cryo-electron microscopy (cryo-EM). These multiple states illuminate dynamics of the selectivity filter and ion permeation pathway with delayed rectifier properties and Cole-Moore effect at the atomic level. Mechanistically, a short S4-S5 linker is coupled with the constrict sites to mediate voltage transducing in a non-domain-swapped configuration, resulting transitions for constrict sites of F464 and Q472 from gating to open state stabilizing for voltage energy transduction. Meanwhile, an additional potassium ion occupied at positions S6 confers the delayed rectifier property and Cole-Moore effects. These results provide insight into voltage transducing and potassium current across membrane, and shed light on the long-sought Cole-Moore effects.
跨膜电压梯度是一种普遍的物理化学线索,通过电压门控离子通道调节多种生物功能。电压感应如何介导离子流在分子水平上仍然未知。在这里,我们通过低温电子显微镜 (cryo-EM) 捕获了人类 Eag2 (hEag2) 的六个构象,范围从关闭、预开放、开放和孔扩张但不导电状态。这些多种状态以具有延迟整流特性和科尔-摩尔效应的原子水平揭示了选择性过滤器和离子渗透途径的动力学。在机制上,短的 S4-S5 接头与收缩部位相连,在非结构域交换构型中介导电压转导,导致 F464 和 Q472 的收缩部位从门控到开放状态的转变,稳定电压能量转导。同时,在 S6 位置占据的额外钾离子赋予延迟整流特性和科尔-摩尔效应。这些结果提供了对跨膜电压转导和钾电流的深入了解,并阐明了长期以来寻求的科尔-摩尔效应。