From the INSERM, CNRS, l'Institut du Thorax, Université de Nantes, 44007 Nantes, France.
the Moscow M.V. Lomonosov State University, Moscow 119234, Russia.
J Biol Chem. 2019 Apr 19;294(16):6506-6521. doi: 10.1074/jbc.RA119.007626. Epub 2019 Feb 26.
Ether-a-go-go family (EAG) channels play a major role in many physiological processes in humans, including cardiac repolarization and cell proliferation. Cryo-EM structures of two of them, K10.1 and human ether-a-go-go-related gene (hERG or K11.1), have revealed an original nondomain-swapped structure, suggesting that the mechanism of voltage-dependent gating of these two channels is quite different from the classical mechanical-lever model. Molecular aspects of hERG voltage-gating have been extensively studied, indicating that the S4-S5 linker (S4-S5) acts as a ligand binding to the S6 gate (S6 C-terminal part, S6) and stabilizes it in a closed state. Moreover, the N-terminal extremity of the channel, called N-Cap, has been suggested to interact with S4-S5 to modulate channel voltage-dependent gating, as N-Cap deletion drastically accelerates hERG channel deactivation. In this study, using COS-7 cells, site-directed mutagenesis, electrophysiological measurements, and immunofluorescence confocal microscopy, we addressed whether these two major mechanisms of voltage-dependent gating are conserved in K10.2 channels. Using cysteine bridges and S4-S5-mimicking peptides, we show that the ligand/receptor model is conserved in K10.2, suggesting that this model is a hallmark of EAG channels. Truncation of the N-Cap domain, Per-Arnt-Sim (PAS) domain, or both in K10.2 abolished the current and altered channel trafficking to the membrane, unlike for the hERG channel in which N-Cap and PAS domain truncations mainly affected channel deactivation. Our results suggest that EAG channels function via a conserved ligand/receptor model of voltage gating, but that the N-Cap and PAS domains have different roles in these channels.
Ether-a-go-go 家族 (EAG) 通道在人类的许多生理过程中发挥着重要作用,包括心脏复极化和细胞增殖。两种通道的冷冻电镜结构,K10.1 和人类醚相关基因 (hERG 或 K11.1),揭示了一种原始的非结构域交换结构,表明这两种通道的电压依赖性门控机制与经典的机械杠杆模型非常不同。hERG 电压门控的分子方面已经得到了广泛的研究,表明 S4-S5 接头 (S4-S5) 充当配体结合到 S6 门 (S6 C 末端部分,S6),并将其稳定在关闭状态。此外,通道的 N 端称为 N-Cap,被认为与 S4-S5 相互作用以调节通道的电压依赖性门控,因为 N-Cap 缺失会大大加速 hERG 通道失活。在这项研究中,我们使用 COS-7 细胞、定点突变、电生理测量和免疫荧光共聚焦显微镜,研究了这两种主要的电压依赖性门控机制是否在 K10.2 通道中保守。我们使用半胱氨酸桥和 S4-S5 模拟肽,表明配体/受体模型在 K10.2 中是保守的,这表明该模型是 EAG 通道的标志。与 hERG 通道不同,K10.2 中的 N-Cap 结构域、Per-Arnt-Sim (PAS) 结构域或两者的截断都会消除电流并改变通道向膜的转运,而 N-Cap 和 PAS 结构域截断主要影响通道失活。我们的结果表明,EAG 通道通过电压门控的保守配体/受体模型发挥作用,但 N-Cap 和 PAS 结构域在这些通道中具有不同的作用。