Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
Alexander Monro Hospital, Bilthoven, The Netherlands.
J Magn Reson Imaging. 2023 Dec;58(6):1739-1749. doi: 10.1002/jmri.28679. Epub 2023 Mar 17.
While several methods have been proposed for automated assessment of breast-cancer response to neoadjuvant chemotherapy on breast MRI, limited information is available about their performance across multiple institutions.
To assess the value and robustness of deep learning-derived volumes of locally advanced breast cancer (LABC) on MRI to infer the presence of residual disease after neoadjuvant chemotherapy.
Retrospective.
Training cohort: 102 consecutive female patients with LABC scheduled for neoadjuvant chemotherapy (NAC) from a single institution (age: 25-73 years). Independent testing cohort: 55 consecutive female patients with LABC from four institutions (age: 25-72 years).
FIELD STRENGTH/SEQUENCE: Training cohort: single vendor 1.5 T or 3.0 T. Testing cohort: multivendor 3.0 T. Gradient echo dynamic contrast-enhanced sequences.
A convolutional neural network (nnU-Net) was trained to segment LABC. Based on resulting tumor volumes, an extremely randomized tree model was trained to assess residual cancer burden (RCB)-0/I vs. RCB-II/III. An independent model was developed using functional tumor volume (FTV). Models were tested on an independent testing cohort and response assessment performance and robustness across multiple institutions were assessed.
The receiver operating characteristic (ROC) was used to calculate the area under the ROC curve (AUC). DeLong's method was used to compare AUCs. Correlations were calculated using Pearson's method. P values <0.05 were considered significant.
Automated segmentation resulted in a median (interquartile range [IQR]) Dice score of 0.87 (0.62-0.93), with similar volumetric measurements (R = 0.95, P < 0.05). Automated volumetric measurements were significantly correlated with FTV (R = 0.80). Tumor volume-derived from deep learning of DCE-MRI was associated with RCB, yielding an AUC of 0.76 to discriminate between RCB-0/I and RCB-II/III, performing similar to the FTV-based model (AUC = 0.77, P = 0.66). Performance was comparable across institutions (IQR AUC: 0.71-0.84).
Deep learning-based segmentation estimates changes in tumor load on DCE-MRI that are associated with RCB after NAC and is robust against variations between institutions.
Stage 4.
虽然已经提出了几种用于自动评估乳腺 MRI 新辅助化疗后乳腺癌反应的方法,但关于它们在多个机构中的性能的信息有限。
评估深度学习衍生的局部晚期乳腺癌(LABC)MRI 体积在推断新辅助化疗(NAC)后残留疾病方面的价值和稳健性。
回顾性。
训练队列:来自单一机构的 102 名连续患有局部晚期乳腺癌(LABC)的女性患者(年龄:25-73 岁),计划接受新辅助化疗(NAC)。独立测试队列:来自四个机构的 55 名连续患有局部晚期乳腺癌(LABC)的女性患者(年龄:25-72 岁)。
磁场强度/序列:训练队列:单一供应商 1.5T 或 3.0T。测试队列:多供应商 3.0T。梯度回波动态对比增强序列。
使用卷积神经网络(nnU-Net)对 LABC 进行分割。基于肿瘤体积,使用极端随机树模型评估残留癌负担(RCB)-0/I 与 RCB-II/III。使用功能肿瘤体积(FTV)开发了一个独立模型。在独立测试队列上测试模型,并评估多个机构之间的响应评估性能和稳健性。
使用接收器工作特征(ROC)计算 ROC 曲线下的面积(AUC)。使用 DeLong 方法比较 AUC。使用 Pearson 方法计算相关性。P 值<0.05 被认为具有统计学意义。
自动分割得到的中位数(四分位距 [IQR])Dice 评分 0.87(0.62-0.93),体积测量结果相似(R=0.95,P<0.05)。自动体积测量与 FTV 呈显著相关(R=0.80)。来自 DCE-MRI 的深度学习肿瘤体积与 RCB 相关,区分 RCB-0/I 和 RCB-II/III 的 AUC 为 0.76,与基于 FTV 的模型表现相当(AUC=0.77,P=0.66)。在机构之间的性能相当(IQR AUC:0.71-0.84)。
基于深度学习的分割估计 DCE-MRI 上肿瘤负荷的变化,与 NAC 后 RCB 相关,并且对机构之间的变化具有稳健性。
2。
第 4 阶段。