Suppr超能文献

TCR-Pred:一个新的网络应用程序,用于使用分子片段描述符预测 CDR3 TCR 序列的表位和 MHC 特异性。

TCR-Pred: A new web-application for prediction of epitope and MHC specificity for CDR3 TCR sequences using molecular fragment descriptors.

机构信息

Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow, Russia.

Laboratory of Structure-Function Based Drug Design, Institute of Biomedical Chemistry, Moscow, Russia.

出版信息

Immunology. 2023 Aug;169(4):447-453. doi: 10.1111/imm.13641. Epub 2023 Mar 16.

Abstract

The search for the relationships between CDR3 TCR sequences and epitopes or MHC types is a challenging task in modern immunology. We propose a new approach to develop the classification models of structure-activity relationships (SAR) using molecular fragment descriptors MNA (Multilevel Neighbourhoods of Atoms) to represent CDR3 TCR sequences and the naïve Bayes classifier algorithm. We have created the freely available TCR-Pred web application (http://way2drug.com/TCR-pred/) to predict the interactions between α chain CDR3 TCR sequences and 116 epitopes or 25 MHC types, as well as the interactions between β chain CDR3 TCR sequences and 202 epitopes or 28 MHC types. The TCR-Pred web application is based on the data (more 250 000 unique CDR3 TCR sequences) from VDJdb, McPAS-TCR, and IEDB databases and the proposed approach. The average AUC values of the prediction accuracy calculated using a 20-fold cross-validation procedure varies from 0.857 to 0.884. The created web application may be useful in studies related with T-cell profiling based on CDR3 TCR sequences.

摘要

寻找 CDR3 TCR 序列与表位或 MHC 类型之间的关系是现代免疫学中的一项具有挑战性的任务。我们提出了一种新的方法,使用分子片段描述符 MNA(原子多层次邻域)来代表 CDR3 TCR 序列,并使用朴素贝叶斯分类器算法来开发结构-活性关系 (SAR) 的分类模型。我们创建了免费的 TCR-Pred 网络应用程序 (http://way2drug.com/TCR-pred/),以预测 α 链 CDR3 TCR 序列与 116 个表位或 25 种 MHC 类型之间的相互作用,以及 β 链 CDR3 TCR 序列与 202 个表位或 28 种 MHC 类型之间的相互作用。TCR-Pred 网络应用程序基于 VDJdb、McPAS-TCR 和 IEDB 数据库以及所提出的方法中的数据(超过 250000 个独特的 CDR3 TCR 序列)。使用 20 倍交叉验证程序计算的预测准确性的平均 AUC 值从 0.857 到 0.884 不等。创建的网络应用程序可能在基于 CDR3 TCR 序列的 T 细胞分析研究中有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验