Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow, Russia.
Laboratory of Structure-Function Based Drug Design, Institute of Biomedical Chemistry, Moscow, Russia.
Immunology. 2023 Aug;169(4):447-453. doi: 10.1111/imm.13641. Epub 2023 Mar 16.
The search for the relationships between CDR3 TCR sequences and epitopes or MHC types is a challenging task in modern immunology. We propose a new approach to develop the classification models of structure-activity relationships (SAR) using molecular fragment descriptors MNA (Multilevel Neighbourhoods of Atoms) to represent CDR3 TCR sequences and the naïve Bayes classifier algorithm. We have created the freely available TCR-Pred web application (http://way2drug.com/TCR-pred/) to predict the interactions between α chain CDR3 TCR sequences and 116 epitopes or 25 MHC types, as well as the interactions between β chain CDR3 TCR sequences and 202 epitopes or 28 MHC types. The TCR-Pred web application is based on the data (more 250 000 unique CDR3 TCR sequences) from VDJdb, McPAS-TCR, and IEDB databases and the proposed approach. The average AUC values of the prediction accuracy calculated using a 20-fold cross-validation procedure varies from 0.857 to 0.884. The created web application may be useful in studies related with T-cell profiling based on CDR3 TCR sequences.
寻找 CDR3 TCR 序列与表位或 MHC 类型之间的关系是现代免疫学中的一项具有挑战性的任务。我们提出了一种新的方法,使用分子片段描述符 MNA(原子多层次邻域)来代表 CDR3 TCR 序列,并使用朴素贝叶斯分类器算法来开发结构-活性关系 (SAR) 的分类模型。我们创建了免费的 TCR-Pred 网络应用程序 (http://way2drug.com/TCR-pred/),以预测 α 链 CDR3 TCR 序列与 116 个表位或 25 种 MHC 类型之间的相互作用,以及 β 链 CDR3 TCR 序列与 202 个表位或 28 种 MHC 类型之间的相互作用。TCR-Pred 网络应用程序基于 VDJdb、McPAS-TCR 和 IEDB 数据库以及所提出的方法中的数据(超过 250000 个独特的 CDR3 TCR 序列)。使用 20 倍交叉验证程序计算的预测准确性的平均 AUC 值从 0.857 到 0.884 不等。创建的网络应用程序可能在基于 CDR3 TCR 序列的 T 细胞分析研究中有用。