Suppr超能文献

哺乳动物在低光环境下的视紫红质分子进化。

Rhodopsin molecular evolution in mammals inhabiting low light environments.

机构信息

School of Life Sciences, East China Normal University, Shanghai, China.

出版信息

PLoS One. 2009 Dec 16;4(12):e8326. doi: 10.1371/journal.pone.0008326.

Abstract

The ecological radiation of mammals to inhabit a variety of light environments is largely attributed to adaptive changes in their visual systems. Visual capabilities are conferred by anatomical features of the eyes as well as the combination and properties of their constituent light sensitive pigments. To test whether evolutionary switches to different niches characterized by dim-light conditions coincided with molecular adaptation of the rod pigment rhodopsin, we sequenced the rhodopsin gene in twenty-two mammals including several bats and subterranean mole-rats. We compared these to thirty-seven published mammal rhodopsin sequences, from species with divergent visual ecologies, including nocturnal, diurnal and aquatic groups. All taxa possessed an intact functional rhodopsin; however, phylogenetic tree reconstruction recovered a gene tree in which rodents were not monophyletic, and also in which echolocating bats formed a monophyletic group. These conflicts with the species tree appear to stem from accelerated evolution in these groups, both of which inhabit low light environments. Selection tests confirmed divergent selection pressures in the clades of subterranean rodents and bats, as well as in marine mammals that live in turbid conditions. We also found evidence of divergent selection pressures among groups of bats with different sensory modalities based on vision and echolocation. Sliding window analyses suggest most changes occur in transmembrane domains, particularly obvious within the pinnipeds; however, we found no obvious pattern between photopic niche and predicted spectral sensitivity based on known critical amino acids. This study indicates that the independent evolution of rhodopsin vision in ecologically specialised groups of mammals has involved molecular evolution at the sequence level, though such changes might not mediate spectral sensitivity directly.

摘要

哺乳动物为适应栖息于各种光照环境而产生的生态辐射,在很大程度上归因于其视觉系统的适应性变化。视觉能力取决于眼睛的解剖结构特征以及其组成光敏感色素的组合和特性。为了测试对不同生态位的进化转变是否与杆状色素视紫红质的分子适应同时发生,我们对包括几种蝙蝠和地下鼹形鼠在内的 22 种哺乳动物的视紫红质基因进行了测序。我们将这些基因与来自具有不同视觉生态的 37 种已发表的哺乳动物视紫红质序列进行了比较,包括夜间、日间和水生动物群。所有分类群都具有完整的功能视紫红质;然而,系统发育树重建恢复的基因树中,啮齿动物不是单系的,而回声定位蝙蝠则形成一个单系群。这些与物种树的冲突似乎源于这些群体的加速进化,它们都栖息在低光照环境中。选择测试证实了地下啮齿动物和蝙蝠以及生活在混浊环境中的海洋哺乳动物的分支中存在不同的选择压力。我们还发现了基于视觉和回声定位的不同感觉方式的蝙蝠群体之间存在不同选择压力的证据。滑动窗口分析表明,大多数变化发生在跨膜结构域中,在鳍足类动物中尤为明显;然而,我们没有发现光生物群与基于已知关键氨基酸预测的光谱灵敏度之间的明显模式。本研究表明,在生态特化的哺乳动物群体中,视紫红质视觉的独立进化涉及序列水平的分子进化,尽管这种变化可能不会直接介导光谱灵敏度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b58c/2790605/75e7d35a184a/pone.0008326.g001.jpg

相似文献

1
Rhodopsin molecular evolution in mammals inhabiting low light environments.
PLoS One. 2009 Dec 16;4(12):e8326. doi: 10.1371/journal.pone.0008326.
2
Divergent positive selection in rhodopsin from lake and riverine cichlid fishes.
Mol Biol Evol. 2014 May;31(5):1149-65. doi: 10.1093/molbev/msu064. Epub 2014 Feb 6.
3
Parallel and convergent evolution of the dim-light vision gene RH1 in bats (Order: Chiroptera).
PLoS One. 2010 Jan 21;5(1):e8838. doi: 10.1371/journal.pone.0008838.
4
Diversified Mammalian Visuasl Adaptations to Bright- or Dim-Light Environments.
Mol Biol Evol. 2023 Apr 4;40(4). doi: 10.1093/molbev/msad063.
6
The molecular origin and evolution of dim-light vision in mammals.
Evolution. 2015 Nov;69(11):2995-3003. doi: 10.1111/evo.12794. Epub 2015 Nov 4.
9
To see or not to see: molecular evolution of the rhodopsin visual pigment in neotropical electric fishes.
Proc Biol Sci. 2019 Jul 10;286(1906):20191182. doi: 10.1098/rspb.2019.1182.
10
High molecular diversity in the rhodopsin gene in closely related goby fishes: A role for visual pigments in adaptive speciation?
Mol Phylogenet Evol. 2010 May;55(2):689-98. doi: 10.1016/j.ympev.2009.10.007. Epub 2009 Oct 12.

引用本文的文献

1
Adaptations of the Vertebrate Retina to Low-Light Conditions: A Review.
Anat Histol Embryol. 2025 Jul;54(4):e70042. doi: 10.1111/ahe.70042.
2
Widespread and Convergent Evolution of Cone Monochromacy in Galeomorph Sharks.
Mol Biol Evol. 2025 Mar 5;42(3). doi: 10.1093/molbev/msaf043.
3
Multiple axes of visual system diversity in Ithomiini, an ecologically diverse tribe of mimetic butterflies.
J Exp Biol. 2023 Dec 15;226(24). doi: 10.1242/jeb.246423. Epub 2023 Dec 8.
4
Diversified Mammalian Visuasl Adaptations to Bright- or Dim-Light Environments.
Mol Biol Evol. 2023 Apr 4;40(4). doi: 10.1093/molbev/msad063.
5
Elevated mutation rates underlie the evolution of the aquatic plant family Podostemaceae.
Commun Biol. 2022 Jan 20;5(1):75. doi: 10.1038/s42003-022-03003-w.
6
Raptor genomes reveal evolutionary signatures of predatory and nocturnal lifestyles.
Genome Biol. 2019 Aug 29;20(1):181. doi: 10.1186/s13059-019-1793-1.
7
Evolution of the Highly Repetitive PEVK Region of Titin Across Mammals.
G3 (Bethesda). 2019 Apr 9;9(4):1103-1115. doi: 10.1534/g3.118.200714.
8
Multifactorial processes underlie parallel opsin loss in neotropical bats.
Elife. 2018 Dec 18;7:e37412. doi: 10.7554/eLife.37412.
9
As Blind as a Bat? Opsin Phylogenetics Illuminates the Evolution of Color Vision in Bats.
Mol Biol Evol. 2019 Jan 1;36(1):54-68. doi: 10.1093/molbev/msy192.
10

本文引用的文献

1
The evolution of color vision in nocturnal mammals.
Proc Natl Acad Sci U S A. 2009 Jun 2;106(22):8980-5. doi: 10.1073/pnas.0813201106. Epub 2009 May 26.
2
The hearing gene Prestin reunites echolocating bats.
Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13959-64. doi: 10.1073/pnas.0802097105. Epub 2008 Sep 5.
3
Elucidation of phenotypic adaptations: Molecular analyses of dim-light vision proteins in vertebrates.
Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13480-5. doi: 10.1073/pnas.0802426105. Epub 2008 Sep 3.
4
The visual system in subterranean African mole-rats (Rodentia, Bathyergidae): retina, subcortical visual nuclei and primary visual cortex.
Brain Res Bull. 2008 Mar 18;75(2-4):356-64. doi: 10.1016/j.brainresbull.2007.10.055. Epub 2007 Nov 26.
5
Adaptive features of aquatic mammals' eye.
Anat Rec (Hoboken). 2007 Jun;290(6):701-15. doi: 10.1002/ar.20529.
6
PAML 4: phylogenetic analysis by maximum likelihood.
Mol Biol Evol. 2007 Aug;24(8):1586-91. doi: 10.1093/molbev/msm088. Epub 2007 May 4.
7
Using genomic data to unravel the root of the placental mammal phylogeny.
Genome Res. 2007 Apr;17(4):413-21. doi: 10.1101/gr.5918807. Epub 2007 Feb 23.
8
The evolution of echolocation in bats.
Trends Ecol Evol. 2006 Mar;21(3):149-56. doi: 10.1016/j.tree.2006.01.001. Epub 2006 Feb 8.
9
Visual pigments of marine carnivores: pinnipeds, polar bear, and sea otter.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006 Aug;192(8):833-43. doi: 10.1007/s00359-006-0121-x. Epub 2006 Mar 30.
10
Organization of somatosensory cortical areas in the naked mole-rat (Heterocephalus glaber).
J Comp Neurol. 2006 Apr 1;495(4):434-52. doi: 10.1002/cne.20883.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验