Department of Microbiology, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
Department of Biology, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran.
Pharmacol Rep. 2023 Jun;75(3):682-694. doi: 10.1007/s43440-023-00467-3. Epub 2023 Mar 17.
There are few effective treatments for Candida biofilm-associated infections. The present study demonstrated changes in the expression of biofilm-associated genes in Candida albicans treated with magnetic iron oxide nanoparticles (denoted as nano-FeO).
Nano-FeO was biologically synthesized using Bacillus licheniformis, Bacillus cereus, and Fusarium oxysporum. Additionally, the biologically synthesized nano-FeO was characterized by visual observation; ultraviolet-visible spectroscopy, scanning electron microscopy, X-ray diffraction spectroscopy, and Fourier transform infrared spectroscopy. The biologically synthesized nano-FeO was tested for growth and biofilm formation in C. albicans. Furthermore, quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was used to study the inhibition of biofilm-associated genes in C. albicans treated with nano-FeO.
The production of biologically synthesized nano-FeO was confirmed using extensive characterization methods. The nano-FeO inhibited growth and biofilm formation. Nano-FeO exhibited growth inhibition with minimum inhibition concentrations (MICs) of 50 to 200 μg mL. The anti-biofilm effects of nano-FeO were shown by 2,3-bis (2-methoxy-4-nitro-5 sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide (XTT) reduction assay, crystal violet staining, and light field microscopy. The gene expression results showed that the downregulation of BCR1, ALS1, ALS3, HWP1, and ECE1 genes inhibited the biofilm formation in C. albicans. ALS1 reduction was greater than others, with downregulation of 1375.83-, 1178.71-, and 768.47-fold at 2 × MIC, 1 × MIC, and ½ × MIC of nano-FeO, respectively.
Biofilm-associated genes as potential molecular targets of nano-FeO in C. albicans may be an effective novel treatment strategy for biofilm-associated infections.
目前针对假丝酵母菌生物膜相关感染,有效的治疗方法还很匮乏。本研究旨在探讨磁性氧化铁纳米颗粒(记为纳米-FeO)处理后,白假丝酵母菌生物膜相关基因的表达变化。
利用地衣芽孢杆菌、蜡样芽孢杆菌和尖孢镰刀菌生物合成纳米-FeO,通过肉眼观察、紫外-可见光谱、扫描电子显微镜、X 射线衍射光谱和傅里叶变换红外光谱对生物合成的纳米-FeO 进行表征。检测生物合成的纳米-FeO 对白假丝酵母菌生长和生物膜形成的影响。此外,采用实时定量逆转录聚合酶链反应(RT-PCR)研究纳米-FeO 处理对白假丝酵母菌生物膜相关基因的抑制作用。
采用多种表征方法证实了生物合成纳米-FeO 的生成。纳米-FeO 抑制了白假丝酵母菌的生长和生物膜形成。纳米-FeO 对生长的抑制作用具有最低抑菌浓度(MIC),MIC 范围为 50-200μg/ml。2,3-双(2-甲氧基-4-硝基-5-磺苯基)-5-[(苯氨基)羰基]-2H-四唑氢氧化物(XTT)还原试验、结晶紫染色和明场显微镜均证实了纳米-FeO 的抗生物膜作用。基因表达结果表明,下调 BCR1、ALS1、ALS3、HWP1 和 ECE1 基因可抑制白假丝酵母菌生物膜的形成。在 2×MIC、1×MIC 和 1/2×MIC 的纳米-FeO 作用下,ALS1 的下调最为显著,分别为 1375.83、1178.71 和 768.47 倍。
白假丝酵母菌生物膜相关基因可能是纳米-FeO 的潜在分子靶点,为生物膜相关感染提供了一种新的有效治疗策略。