Suppr超能文献

线粒体转录因子 A 的关键氨基酸残基与无碱基(AP)位点动态协同作用,促进 AP 裂合酶反应。

Key Amino Acid Residues of Mitochondrial Transcription Factor A Synergize with Abasic (AP) Site Dynamics To Facilitate AP-Lyase Reactions.

机构信息

Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States.

Environmental Toxicology Graduate Program, University of California, Riverside, Riverside, California 92521, United States.

出版信息

ACS Chem Biol. 2023 May 19;18(5):1168-1179. doi: 10.1021/acschembio.3c00047. Epub 2023 Mar 17.

Abstract

Human mitochondrial DNA (mtDNA) encodes 37 essential genes and plays a critical role in mitochondrial and cellular functions. mtDNA is susceptible to damage by endogenous and exogenous chemicals. Damaged mtDNA molecules are counteracted by the redundancy, repair, and degradation of mtDNA. In response to difficult-to-repair or excessive amounts of DNA lesions, mtDNA degradation is a crucial mitochondrial genome maintenance mechanism. Nevertheless, the molecular basis of mtDNA degradation remains incompletely understood. Recently, mitochondrial transcription factor A (TFAM) has emerged as a factor in degrading damaged mtDNA containing abasic (AP) sites. TFAM has AP-lyase activity, which cleaves DNA at AP sites. Human TFAM and its homologs contain a higher abundance of Glu than that of the proteome. To decipher the role of Glu in TFAM-catalyzed AP-DNA cleavage, we constructed TFAM variants and used biochemical assays, kinetic simulations, and molecular dynamics (MD) simulations to probe the functional importance of E187 near a key residue K186. Our previous studies showed that K186 is a primary residue to cleave AP-DNA via Schiff base chemistry. Here, we demonstrate that E187 facilitates β-elimination, key to AP-DNA strand scission. MD simulations showed that extrahelical confirmation of the AP lesion and the flexibility of E187 in TFAM-DNA complexes facilitate AP-lyase reactions. Together, highly abundant Lys and Glu residues in TFAM promote AP-DNA strand scission, supporting the role of TFAM in AP-DNA turnover and implying the breadth of this process across different species.

摘要

人线粒体 DNA(mtDNA)编码 37 个必需基因,在线粒体和细胞功能中起着关键作用。mtDNA 容易受到内源性和外源性化学物质的损伤。受损的 mtDNA 分子通过 mtDNA 的冗余、修复和降解来拮抗。对于难以修复或 DNA 损伤过多的情况,mtDNA 降解是一种至关重要的线粒体基因组维持机制。然而,mtDNA 降解的分子基础仍不完全清楚。最近,线粒体转录因子 A(TFAM)已成为降解含有碱基缺失(AP)位点的受损 mtDNA 的因素。TFAM 具有 AP 裂解酶活性,可在 AP 位点切割 DNA。人类 TFAM 及其同源物含有比蛋白质组更高丰度的 Glu。为了解析 Glu 在 TFAM 催化的 AP-DNA 切割中的作用,我们构建了 TFAM 变体,并使用生化测定、动力学模拟和分子动力学(MD)模拟来探测关键残基 K186 附近的 E187 在功能上的重要性。我们之前的研究表明,K186 是通过席夫碱化学切割 AP-DNA 的主要残基。在这里,我们证明了 E187 有助于β-消除,这是 AP-DNA 链断裂的关键。MD 模拟表明,AP 损伤的额外螺旋构象和 TFAM-DNA 复合物中 E187 的灵活性促进了 AP-裂解酶反应。总之,TFAM 中大量存在的 Lys 和 Glu 残基促进了 AP-DNA 链的断裂,支持了 TFAM 在 AP-DNA 周转中的作用,并暗示了这一过程在不同物种中的广泛存在。

相似文献

引用本文的文献

2
DNA repair pathways in the mitochondria.线粒体中的DNA修复途径。
DNA Repair (Amst). 2025 Feb;146:103814. doi: 10.1016/j.dnarep.2025.103814. Epub 2025 Feb 1.

本文引用的文献

8
Interlocking activities of DNA polymerase β in the base excision repair pathway.DNA 聚合酶 β 在碱基切除修复途径中的连锁反应。
Proc Natl Acad Sci U S A. 2022 Mar 8;119(10):e2118940119. doi: 10.1073/pnas.2118940119. Epub 2022 Mar 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验