Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
Sci Adv. 2023 Mar 15;9(11):eadf6631. doi: 10.1126/sciadv.adf6631. Epub 2023 Mar 17.
Unveiling the fundamental dynamics of naturally or artificially formed magnetic quasicrystals in the presence of an external magnetic field remains a difficult problem that may have implications for the design of information processing devices. By embedding a qubit magnetic Penrose quasicrystal into a quantum annealer, we were able to reproduce the formation of magnetic phases driven by specific physical parameter selections, allowing us to distinguish a wide range of frustrated magnetic configurations at the single-spin scale. In our experiments, we observe some spins dynamically activate, while others remain static, all within an average magnetization space defined by competing structural and magnetic degrees of freedom. Static spin structure factors reveal ferromagnetic and ferrimagnetic modulations that are compatible with a variety of spin textures. This research demonstrates that introducing structural aperiodicity in magnetic devices that exploit spin degeneracy in a single, richly intraconnected finite object can enable the engineering of quantum states in both the effective low-temperature and thermally excited regimes.
揭示在外磁场存在下自然或人为形成的磁准晶体的基本动力学仍然是一个难题,这可能对信息处理设备的设计有影响。通过将量子位磁彭罗斯准晶体嵌入量子退火器中,我们能够再现由特定物理参数选择驱动的磁相形成,从而能够在单自旋尺度上区分广泛的受挫磁构型。在我们的实验中,我们观察到一些自旋动态激活,而另一些自旋保持静态,所有这些都在由竞争结构和磁自由度定义的平均磁化空间内。静态自旋结构因子揭示了与多种自旋织构相兼容的铁磁和亚铁磁调制。这项研究表明,在利用单个丰富的内部连接有限物体中的自旋简并性的磁设备中引入结构非周期性,可以在有效低温和热激发两种状态下实现量子态的工程设计。