Qi Ren, Zou Quan
Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China.
School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
Research (Wash D C). 2023;6:0050. doi: 10.34133/research.0050. Epub 2023 Mar 9.
Cancer treatments always face challenging problems, particularly drug resistance due to tumor cell heterogeneity. The existing datasets include the relationship between gene expression and drug sensitivities; however, the majority are based on tissue-level studies. Study drugs at the single-cell level are perspective to overcome minimal residual disease caused by subclonal resistant cancer cells retained after initial curative therapy. Fortunately, machine learning techniques can help us understand how different types of cells respond to different cancer drugs from the perspective of single-cell gene expression. Good modeling using single-cell data and drug response information will not only improve machine learning for cell-drug outcome prediction but also facilitate the discovery of drugs for specific cancer subgroups and specific cancer treatments. In this paper, we review machine learning and deep learning approaches in drug research. By analyzing the application of these methods on cancer cell lines and single-cell data and comparing the technical gap between single-cell sequencing data analysis and single-cell drug sensitivity analysis, we hope to explore the trends and potential of drug research at the single-cell data level and provide more inspiration for drug research at the single-cell level. We anticipate that this review will stimulate the innovative use of machine learning methods to address new challenges in precision medicine more broadly.
癌症治疗总是面临具有挑战性的问题,尤其是由于肿瘤细胞异质性导致的耐药性。现有的数据集包括基因表达与药物敏感性之间的关系;然而,大多数是基于组织水平的研究。在单细胞水平研究药物对于克服初始治愈性治疗后残留的亚克隆耐药癌细胞引起的微小残留病具有重要意义。幸运的是,机器学习技术可以帮助我们从单细胞基因表达的角度了解不同类型的细胞如何对不同的癌症药物做出反应。利用单细胞数据和药物反应信息进行良好的建模不仅会改善用于细胞-药物结果预测的机器学习,还将促进针对特定癌症亚组和特定癌症治疗的药物发现。在本文中,我们回顾了药物研究中的机器学习和深度学习方法。通过分析这些方法在癌细胞系和单细胞数据上的应用,并比较单细胞测序数据分析和单细胞药物敏感性分析之间的技术差距,我们希望探索单细胞数据水平上药物研究的趋势和潜力,并为单细胞水平的药物研究提供更多启发。我们预计这篇综述将更广泛地激发机器学习方法的创新性应用,以应对精准医学中的新挑战。