Hu Jian, Li Xiangjie, Coleman Kyle, Schroeder Amelia, Ma Nan, Irwin David J, Lee Edward B, Shinohara Russell T, Li Mingyao
Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
School of Statistics and Data Science, Nankai University, Tianjin, China.
Nat Methods. 2021 Nov;18(11):1342-1351. doi: 10.1038/s41592-021-01255-8. Epub 2021 Oct 28.
Recent advances in spatially resolved transcriptomics (SRT) technologies have enabled comprehensive characterization of gene expression patterns in the context of tissue microenvironment. To elucidate spatial gene expression variation, we present SpaGCN, a graph convolutional network approach that integrates gene expression, spatial location and histology in SRT data analysis. Through graph convolution, SpaGCN aggregates gene expression of each spot from its neighboring spots, which enables the identification of spatial domains with coherent expression and histology. The subsequent domain guided differential expression (DE) analysis then detects genes with enriched expression patterns in the identified domains. Analyzing seven SRT datasets using SpaGCN, we show it can detect genes with much more enriched spatial expression patterns than competing methods. Furthermore, genes detected by SpaGCN are transferrable and can be utilized to study spatial variation of gene expression in other datasets. SpaGCN is computationally fast, platform independent, making it a desirable tool for diverse SRT studies.
空间分辨转录组学(SRT)技术的最新进展使得在组织微环境背景下对基因表达模式进行全面表征成为可能。为了阐明空间基因表达变异,我们提出了SpaGCN,这是一种在SRT数据分析中整合基因表达、空间位置和组织学的图卷积网络方法。通过图卷积,SpaGCN从相邻点聚合每个点的基因表达,这使得能够识别具有连贯表达和组织学的空间域。随后的域引导差异表达(DE)分析然后检测在识别出的域中具有富集表达模式的基因。使用SpaGCN分析七个SRT数据集,我们表明它能够比竞争方法检测到具有更富集空间表达模式的基因。此外,SpaGCN检测到的基因具有可转移性,可用于研究其他数据集中基因表达的空间变异。SpaGCN计算速度快,与平台无关,使其成为各种SRT研究的理想工具。